Problem 6. Barry Simon. A comprehensive course in analysis.











up vote
0
down vote

favorite












Let $X$ compact Hausdorff space in wich every $left{xright}$ is a Baire set and let $mu$ be a Baire measure.
Define $mu_{pp}(A)=sum_{xin A}mu(left{xright})$



(a) Prove that $mu_{pp}$ is a pure point measure. I already proves!



(b) Prove that $mu_{c}:=mu-mu_{pp}$ is a nonnegative continuous measure.
I already prove!



(c)If $mu=nu_c+nu_{pp}$ with $nu_{pp}$ and $nu_{c}$ continuous, prove that $nu_{pp}=mu_{pp}$ and so $nu_{c}=mu_{c}$ (Correction. $nu_{pp}$ is a pure point)



How prove (c)?










share|cite|improve this question
























  • You have not quoted c) correctly. If $nu_c$ and $nu_{pp}$ are both continuous than $mu$ itself is continuous.
    – Kavi Rama Murthy
    Nov 21 at 5:43










  • oh! yes. $nu_{pp}$ is pure point
    – eraldcoil
    Nov 21 at 5:51















up vote
0
down vote

favorite












Let $X$ compact Hausdorff space in wich every $left{xright}$ is a Baire set and let $mu$ be a Baire measure.
Define $mu_{pp}(A)=sum_{xin A}mu(left{xright})$



(a) Prove that $mu_{pp}$ is a pure point measure. I already proves!



(b) Prove that $mu_{c}:=mu-mu_{pp}$ is a nonnegative continuous measure.
I already prove!



(c)If $mu=nu_c+nu_{pp}$ with $nu_{pp}$ and $nu_{c}$ continuous, prove that $nu_{pp}=mu_{pp}$ and so $nu_{c}=mu_{c}$ (Correction. $nu_{pp}$ is a pure point)



How prove (c)?










share|cite|improve this question
























  • You have not quoted c) correctly. If $nu_c$ and $nu_{pp}$ are both continuous than $mu$ itself is continuous.
    – Kavi Rama Murthy
    Nov 21 at 5:43










  • oh! yes. $nu_{pp}$ is pure point
    – eraldcoil
    Nov 21 at 5:51













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $X$ compact Hausdorff space in wich every $left{xright}$ is a Baire set and let $mu$ be a Baire measure.
Define $mu_{pp}(A)=sum_{xin A}mu(left{xright})$



(a) Prove that $mu_{pp}$ is a pure point measure. I already proves!



(b) Prove that $mu_{c}:=mu-mu_{pp}$ is a nonnegative continuous measure.
I already prove!



(c)If $mu=nu_c+nu_{pp}$ with $nu_{pp}$ and $nu_{c}$ continuous, prove that $nu_{pp}=mu_{pp}$ and so $nu_{c}=mu_{c}$ (Correction. $nu_{pp}$ is a pure point)



How prove (c)?










share|cite|improve this question















Let $X$ compact Hausdorff space in wich every $left{xright}$ is a Baire set and let $mu$ be a Baire measure.
Define $mu_{pp}(A)=sum_{xin A}mu(left{xright})$



(a) Prove that $mu_{pp}$ is a pure point measure. I already proves!



(b) Prove that $mu_{c}:=mu-mu_{pp}$ is a nonnegative continuous measure.
I already prove!



(c)If $mu=nu_c+nu_{pp}$ with $nu_{pp}$ and $nu_{c}$ continuous, prove that $nu_{pp}=mu_{pp}$ and so $nu_{c}=mu_{c}$ (Correction. $nu_{pp}$ is a pure point)



How prove (c)?







functional-analysis measure-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 at 5:53

























asked Nov 21 at 5:32









eraldcoil

28119




28119












  • You have not quoted c) correctly. If $nu_c$ and $nu_{pp}$ are both continuous than $mu$ itself is continuous.
    – Kavi Rama Murthy
    Nov 21 at 5:43










  • oh! yes. $nu_{pp}$ is pure point
    – eraldcoil
    Nov 21 at 5:51


















  • You have not quoted c) correctly. If $nu_c$ and $nu_{pp}$ are both continuous than $mu$ itself is continuous.
    – Kavi Rama Murthy
    Nov 21 at 5:43










  • oh! yes. $nu_{pp}$ is pure point
    – eraldcoil
    Nov 21 at 5:51
















You have not quoted c) correctly. If $nu_c$ and $nu_{pp}$ are both continuous than $mu$ itself is continuous.
– Kavi Rama Murthy
Nov 21 at 5:43




You have not quoted c) correctly. If $nu_c$ and $nu_{pp}$ are both continuous than $mu$ itself is continuous.
– Kavi Rama Murthy
Nov 21 at 5:43












oh! yes. $nu_{pp}$ is pure point
– eraldcoil
Nov 21 at 5:51




oh! yes. $nu_{pp}$ is pure point
– eraldcoil
Nov 21 at 5:51










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










Let $C={x:mu {x} neq 0}$ and $D={x:nu_{pp} {x} neq 0}$, Verify the following for any measurable set $E$: $$nu_c(E)=nu_c(Esetminus Ccup D)=mu (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+mu_{pp} (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+0+0=mu_c(E).$$ This proves that $nu_c=mu_c$ and it follows automatically that $mu_{pp}=nu_{pp}$.






share|cite|improve this answer





















  • Why $mu_{pp}( (Esetminus C)cup D)=0$? I have this. Sup. $mu_{pp}( (Esetminus C)cup D)>0$ then exists $xin (Esetminus C)cup D$ such that $mu(x)>0$. If $xin Esetminus C$ then $xnotin C$, implies $mu(x)=0$ a contradiction. If $xin D.$ What is the contradiction?
    – eraldcoil
    Nov 25 at 7:33












  • @eraldcoil By $Esetminus Ccup D$ I meant $Esetminus (Ccup D)$, not $(Esetminus C)cup D$
    – Kavi Rama Murthy
    Nov 25 at 11:38










  • ah ok! thanks. I see $nu{pp}(Esetminus (Ccup D))=0$ but if $nu{pp}(Esetminus (Ccup D))>0$ then exits $xin Esetminus (Ccup D): nu_{pp}(x)>0$ a contradiction because $xin D^c$. Similary, $mu_{pp}(Esetminus (Ccup D))=0$. But I still do not see $nu_c(E)=nu_c(Esetminus (Ccup D))$
    – eraldcoil
    Nov 25 at 21:27










  • @eraldcoil $C$ and $D$ are both countable sets and $nu_c$ is a continuous measure. Hence $nu_c(Ccup D)=0$.
    – Kavi Rama Murthy
    Nov 25 at 23:10











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007304%2fproblem-6-barry-simon-a-comprehensive-course-in-analysis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










Let $C={x:mu {x} neq 0}$ and $D={x:nu_{pp} {x} neq 0}$, Verify the following for any measurable set $E$: $$nu_c(E)=nu_c(Esetminus Ccup D)=mu (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+mu_{pp} (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+0+0=mu_c(E).$$ This proves that $nu_c=mu_c$ and it follows automatically that $mu_{pp}=nu_{pp}$.






share|cite|improve this answer





















  • Why $mu_{pp}( (Esetminus C)cup D)=0$? I have this. Sup. $mu_{pp}( (Esetminus C)cup D)>0$ then exists $xin (Esetminus C)cup D$ such that $mu(x)>0$. If $xin Esetminus C$ then $xnotin C$, implies $mu(x)=0$ a contradiction. If $xin D.$ What is the contradiction?
    – eraldcoil
    Nov 25 at 7:33












  • @eraldcoil By $Esetminus Ccup D$ I meant $Esetminus (Ccup D)$, not $(Esetminus C)cup D$
    – Kavi Rama Murthy
    Nov 25 at 11:38










  • ah ok! thanks. I see $nu{pp}(Esetminus (Ccup D))=0$ but if $nu{pp}(Esetminus (Ccup D))>0$ then exits $xin Esetminus (Ccup D): nu_{pp}(x)>0$ a contradiction because $xin D^c$. Similary, $mu_{pp}(Esetminus (Ccup D))=0$. But I still do not see $nu_c(E)=nu_c(Esetminus (Ccup D))$
    – eraldcoil
    Nov 25 at 21:27










  • @eraldcoil $C$ and $D$ are both countable sets and $nu_c$ is a continuous measure. Hence $nu_c(Ccup D)=0$.
    – Kavi Rama Murthy
    Nov 25 at 23:10















up vote
2
down vote



accepted










Let $C={x:mu {x} neq 0}$ and $D={x:nu_{pp} {x} neq 0}$, Verify the following for any measurable set $E$: $$nu_c(E)=nu_c(Esetminus Ccup D)=mu (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+mu_{pp} (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+0+0=mu_c(E).$$ This proves that $nu_c=mu_c$ and it follows automatically that $mu_{pp}=nu_{pp}$.






share|cite|improve this answer





















  • Why $mu_{pp}( (Esetminus C)cup D)=0$? I have this. Sup. $mu_{pp}( (Esetminus C)cup D)>0$ then exists $xin (Esetminus C)cup D$ such that $mu(x)>0$. If $xin Esetminus C$ then $xnotin C$, implies $mu(x)=0$ a contradiction. If $xin D.$ What is the contradiction?
    – eraldcoil
    Nov 25 at 7:33












  • @eraldcoil By $Esetminus Ccup D$ I meant $Esetminus (Ccup D)$, not $(Esetminus C)cup D$
    – Kavi Rama Murthy
    Nov 25 at 11:38










  • ah ok! thanks. I see $nu{pp}(Esetminus (Ccup D))=0$ but if $nu{pp}(Esetminus (Ccup D))>0$ then exits $xin Esetminus (Ccup D): nu_{pp}(x)>0$ a contradiction because $xin D^c$. Similary, $mu_{pp}(Esetminus (Ccup D))=0$. But I still do not see $nu_c(E)=nu_c(Esetminus (Ccup D))$
    – eraldcoil
    Nov 25 at 21:27










  • @eraldcoil $C$ and $D$ are both countable sets and $nu_c$ is a continuous measure. Hence $nu_c(Ccup D)=0$.
    – Kavi Rama Murthy
    Nov 25 at 23:10













up vote
2
down vote



accepted







up vote
2
down vote



accepted






Let $C={x:mu {x} neq 0}$ and $D={x:nu_{pp} {x} neq 0}$, Verify the following for any measurable set $E$: $$nu_c(E)=nu_c(Esetminus Ccup D)=mu (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+mu_{pp} (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+0+0=mu_c(E).$$ This proves that $nu_c=mu_c$ and it follows automatically that $mu_{pp}=nu_{pp}$.






share|cite|improve this answer












Let $C={x:mu {x} neq 0}$ and $D={x:nu_{pp} {x} neq 0}$, Verify the following for any measurable set $E$: $$nu_c(E)=nu_c(Esetminus Ccup D)=mu (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+mu_{pp} (Esetminus Ccup D)-nu_{pp}(Esetminus Ccup D)$$ $$=mu_c (Esetminus Ccup D)+0+0=mu_c(E).$$ This proves that $nu_c=mu_c$ and it follows automatically that $mu_{pp}=nu_{pp}$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 21 at 6:03









Kavi Rama Murthy

44.7k31852




44.7k31852












  • Why $mu_{pp}( (Esetminus C)cup D)=0$? I have this. Sup. $mu_{pp}( (Esetminus C)cup D)>0$ then exists $xin (Esetminus C)cup D$ such that $mu(x)>0$. If $xin Esetminus C$ then $xnotin C$, implies $mu(x)=0$ a contradiction. If $xin D.$ What is the contradiction?
    – eraldcoil
    Nov 25 at 7:33












  • @eraldcoil By $Esetminus Ccup D$ I meant $Esetminus (Ccup D)$, not $(Esetminus C)cup D$
    – Kavi Rama Murthy
    Nov 25 at 11:38










  • ah ok! thanks. I see $nu{pp}(Esetminus (Ccup D))=0$ but if $nu{pp}(Esetminus (Ccup D))>0$ then exits $xin Esetminus (Ccup D): nu_{pp}(x)>0$ a contradiction because $xin D^c$. Similary, $mu_{pp}(Esetminus (Ccup D))=0$. But I still do not see $nu_c(E)=nu_c(Esetminus (Ccup D))$
    – eraldcoil
    Nov 25 at 21:27










  • @eraldcoil $C$ and $D$ are both countable sets and $nu_c$ is a continuous measure. Hence $nu_c(Ccup D)=0$.
    – Kavi Rama Murthy
    Nov 25 at 23:10


















  • Why $mu_{pp}( (Esetminus C)cup D)=0$? I have this. Sup. $mu_{pp}( (Esetminus C)cup D)>0$ then exists $xin (Esetminus C)cup D$ such that $mu(x)>0$. If $xin Esetminus C$ then $xnotin C$, implies $mu(x)=0$ a contradiction. If $xin D.$ What is the contradiction?
    – eraldcoil
    Nov 25 at 7:33












  • @eraldcoil By $Esetminus Ccup D$ I meant $Esetminus (Ccup D)$, not $(Esetminus C)cup D$
    – Kavi Rama Murthy
    Nov 25 at 11:38










  • ah ok! thanks. I see $nu{pp}(Esetminus (Ccup D))=0$ but if $nu{pp}(Esetminus (Ccup D))>0$ then exits $xin Esetminus (Ccup D): nu_{pp}(x)>0$ a contradiction because $xin D^c$. Similary, $mu_{pp}(Esetminus (Ccup D))=0$. But I still do not see $nu_c(E)=nu_c(Esetminus (Ccup D))$
    – eraldcoil
    Nov 25 at 21:27










  • @eraldcoil $C$ and $D$ are both countable sets and $nu_c$ is a continuous measure. Hence $nu_c(Ccup D)=0$.
    – Kavi Rama Murthy
    Nov 25 at 23:10
















Why $mu_{pp}( (Esetminus C)cup D)=0$? I have this. Sup. $mu_{pp}( (Esetminus C)cup D)>0$ then exists $xin (Esetminus C)cup D$ such that $mu(x)>0$. If $xin Esetminus C$ then $xnotin C$, implies $mu(x)=0$ a contradiction. If $xin D.$ What is the contradiction?
– eraldcoil
Nov 25 at 7:33






Why $mu_{pp}( (Esetminus C)cup D)=0$? I have this. Sup. $mu_{pp}( (Esetminus C)cup D)>0$ then exists $xin (Esetminus C)cup D$ such that $mu(x)>0$. If $xin Esetminus C$ then $xnotin C$, implies $mu(x)=0$ a contradiction. If $xin D.$ What is the contradiction?
– eraldcoil
Nov 25 at 7:33














@eraldcoil By $Esetminus Ccup D$ I meant $Esetminus (Ccup D)$, not $(Esetminus C)cup D$
– Kavi Rama Murthy
Nov 25 at 11:38




@eraldcoil By $Esetminus Ccup D$ I meant $Esetminus (Ccup D)$, not $(Esetminus C)cup D$
– Kavi Rama Murthy
Nov 25 at 11:38












ah ok! thanks. I see $nu{pp}(Esetminus (Ccup D))=0$ but if $nu{pp}(Esetminus (Ccup D))>0$ then exits $xin Esetminus (Ccup D): nu_{pp}(x)>0$ a contradiction because $xin D^c$. Similary, $mu_{pp}(Esetminus (Ccup D))=0$. But I still do not see $nu_c(E)=nu_c(Esetminus (Ccup D))$
– eraldcoil
Nov 25 at 21:27




ah ok! thanks. I see $nu{pp}(Esetminus (Ccup D))=0$ but if $nu{pp}(Esetminus (Ccup D))>0$ then exits $xin Esetminus (Ccup D): nu_{pp}(x)>0$ a contradiction because $xin D^c$. Similary, $mu_{pp}(Esetminus (Ccup D))=0$. But I still do not see $nu_c(E)=nu_c(Esetminus (Ccup D))$
– eraldcoil
Nov 25 at 21:27












@eraldcoil $C$ and $D$ are both countable sets and $nu_c$ is a continuous measure. Hence $nu_c(Ccup D)=0$.
– Kavi Rama Murthy
Nov 25 at 23:10




@eraldcoil $C$ and $D$ are both countable sets and $nu_c$ is a continuous measure. Hence $nu_c(Ccup D)=0$.
– Kavi Rama Murthy
Nov 25 at 23:10


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007304%2fproblem-6-barry-simon-a-comprehensive-course-in-analysis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten