How can we show that $int_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over...












18












$begingroup$


Motivated by this paper.



Conjecture:




$$int_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x ,mathrm dx=k,tag1$$
where $k$ is a real number.




Making an attempt:



$u=e^x+1implies ,mathrm du=e^x,mathrm dx$ and let $k=1$ for simplification, then (1) becomes



$$int_{1}^{infty}{u^3over pi^2+(u-x)^2}cdot{ln(u-1)over pi^2+(u+x)^2}cdot{2mathrm duover u-1}.tag2$$



I have no idea where to go from here! I don't think substitution work here, probably using contour integration.



How can we prove (1)?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Related: en.wikipedia.org/wiki/Gregory_coefficients and math.stackexchange.com/questions/45745/…
    $endgroup$
    – Jack D'Aurizio
    Apr 19 '17 at 20:46










  • $begingroup$
    how do you came up with this conjecture? (+1)
    $endgroup$
    – tired
    Apr 19 '17 at 22:35












  • $begingroup$
    Btw. what is the meaning of the $pm$ symbol? both integrals give the same value?
    $endgroup$
    – tired
    Apr 19 '17 at 22:41










  • $begingroup$
    Most likely the integral is given by the residue at $x=i pi $ plus/minus the residue at $x=infty$. Unluckily i don't have the time to dig in deeper (especially one has to show that all other residue contributions vanish) but maybe someone can take it from here
    $endgroup$
    – tired
    Apr 19 '17 at 23:18












  • $begingroup$
    Numerically the cancelations defintily happens, so this is the way to go
    $endgroup$
    – tired
    Apr 19 '17 at 23:30
















18












$begingroup$


Motivated by this paper.



Conjecture:




$$int_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x ,mathrm dx=k,tag1$$
where $k$ is a real number.




Making an attempt:



$u=e^x+1implies ,mathrm du=e^x,mathrm dx$ and let $k=1$ for simplification, then (1) becomes



$$int_{1}^{infty}{u^3over pi^2+(u-x)^2}cdot{ln(u-1)over pi^2+(u+x)^2}cdot{2mathrm duover u-1}.tag2$$



I have no idea where to go from here! I don't think substitution work here, probably using contour integration.



How can we prove (1)?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Related: en.wikipedia.org/wiki/Gregory_coefficients and math.stackexchange.com/questions/45745/…
    $endgroup$
    – Jack D'Aurizio
    Apr 19 '17 at 20:46










  • $begingroup$
    how do you came up with this conjecture? (+1)
    $endgroup$
    – tired
    Apr 19 '17 at 22:35












  • $begingroup$
    Btw. what is the meaning of the $pm$ symbol? both integrals give the same value?
    $endgroup$
    – tired
    Apr 19 '17 at 22:41










  • $begingroup$
    Most likely the integral is given by the residue at $x=i pi $ plus/minus the residue at $x=infty$. Unluckily i don't have the time to dig in deeper (especially one has to show that all other residue contributions vanish) but maybe someone can take it from here
    $endgroup$
    – tired
    Apr 19 '17 at 23:18












  • $begingroup$
    Numerically the cancelations defintily happens, so this is the way to go
    $endgroup$
    – tired
    Apr 19 '17 at 23:30














18












18








18


15



$begingroup$


Motivated by this paper.



Conjecture:




$$int_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x ,mathrm dx=k,tag1$$
where $k$ is a real number.




Making an attempt:



$u=e^x+1implies ,mathrm du=e^x,mathrm dx$ and let $k=1$ for simplification, then (1) becomes



$$int_{1}^{infty}{u^3over pi^2+(u-x)^2}cdot{ln(u-1)over pi^2+(u+x)^2}cdot{2mathrm duover u-1}.tag2$$



I have no idea where to go from here! I don't think substitution work here, probably using contour integration.



How can we prove (1)?










share|cite|improve this question











$endgroup$




Motivated by this paper.



Conjecture:




$$int_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x ,mathrm dx=k,tag1$$
where $k$ is a real number.




Making an attempt:



$u=e^x+1implies ,mathrm du=e^x,mathrm dx$ and let $k=1$ for simplification, then (1) becomes



$$int_{1}^{infty}{u^3over pi^2+(u-x)^2}cdot{ln(u-1)over pi^2+(u+x)^2}cdot{2mathrm duover u-1}.tag2$$



I have no idea where to go from here! I don't think substitution work here, probably using contour integration.



How can we prove (1)?







calculus integration definite-integrals contour-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 10 '18 at 5:50









Saad

19.7k92352




19.7k92352










asked Apr 19 '17 at 20:42









gymbvghjkgkjkhgfklgymbvghjkgkjkhgfkl

1




1












  • $begingroup$
    Related: en.wikipedia.org/wiki/Gregory_coefficients and math.stackexchange.com/questions/45745/…
    $endgroup$
    – Jack D'Aurizio
    Apr 19 '17 at 20:46










  • $begingroup$
    how do you came up with this conjecture? (+1)
    $endgroup$
    – tired
    Apr 19 '17 at 22:35












  • $begingroup$
    Btw. what is the meaning of the $pm$ symbol? both integrals give the same value?
    $endgroup$
    – tired
    Apr 19 '17 at 22:41










  • $begingroup$
    Most likely the integral is given by the residue at $x=i pi $ plus/minus the residue at $x=infty$. Unluckily i don't have the time to dig in deeper (especially one has to show that all other residue contributions vanish) but maybe someone can take it from here
    $endgroup$
    – tired
    Apr 19 '17 at 23:18












  • $begingroup$
    Numerically the cancelations defintily happens, so this is the way to go
    $endgroup$
    – tired
    Apr 19 '17 at 23:30


















  • $begingroup$
    Related: en.wikipedia.org/wiki/Gregory_coefficients and math.stackexchange.com/questions/45745/…
    $endgroup$
    – Jack D'Aurizio
    Apr 19 '17 at 20:46










  • $begingroup$
    how do you came up with this conjecture? (+1)
    $endgroup$
    – tired
    Apr 19 '17 at 22:35












  • $begingroup$
    Btw. what is the meaning of the $pm$ symbol? both integrals give the same value?
    $endgroup$
    – tired
    Apr 19 '17 at 22:41










  • $begingroup$
    Most likely the integral is given by the residue at $x=i pi $ plus/minus the residue at $x=infty$. Unluckily i don't have the time to dig in deeper (especially one has to show that all other residue contributions vanish) but maybe someone can take it from here
    $endgroup$
    – tired
    Apr 19 '17 at 23:18












  • $begingroup$
    Numerically the cancelations defintily happens, so this is the way to go
    $endgroup$
    – tired
    Apr 19 '17 at 23:30
















$begingroup$
Related: en.wikipedia.org/wiki/Gregory_coefficients and math.stackexchange.com/questions/45745/…
$endgroup$
– Jack D'Aurizio
Apr 19 '17 at 20:46




$begingroup$
Related: en.wikipedia.org/wiki/Gregory_coefficients and math.stackexchange.com/questions/45745/…
$endgroup$
– Jack D'Aurizio
Apr 19 '17 at 20:46












$begingroup$
how do you came up with this conjecture? (+1)
$endgroup$
– tired
Apr 19 '17 at 22:35






$begingroup$
how do you came up with this conjecture? (+1)
$endgroup$
– tired
Apr 19 '17 at 22:35














$begingroup$
Btw. what is the meaning of the $pm$ symbol? both integrals give the same value?
$endgroup$
– tired
Apr 19 '17 at 22:41




$begingroup$
Btw. what is the meaning of the $pm$ symbol? both integrals give the same value?
$endgroup$
– tired
Apr 19 '17 at 22:41












$begingroup$
Most likely the integral is given by the residue at $x=i pi $ plus/minus the residue at $x=infty$. Unluckily i don't have the time to dig in deeper (especially one has to show that all other residue contributions vanish) but maybe someone can take it from here
$endgroup$
– tired
Apr 19 '17 at 23:18






$begingroup$
Most likely the integral is given by the residue at $x=i pi $ plus/minus the residue at $x=infty$. Unluckily i don't have the time to dig in deeper (especially one has to show that all other residue contributions vanish) but maybe someone can take it from here
$endgroup$
– tired
Apr 19 '17 at 23:18














$begingroup$
Numerically the cancelations defintily happens, so this is the way to go
$endgroup$
– tired
Apr 19 '17 at 23:30




$begingroup$
Numerically the cancelations defintily happens, so this is the way to go
$endgroup$
– tired
Apr 19 '17 at 23:30










2 Answers
2






active

oldest

votes


















11





+250







$begingroup$

Some integrals




  • Let us prove that


$$boxed{I_0 = intlimits_{-infty}^{+infty}{dzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1 + ie^xsin y - iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1right)^2 - left(e^xsin y - yright)^2 + pi^2 = 0\
left(e^xcos y - x + 1right)left(e^xsin y - yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y = x - 1\
left|e^xsin y - yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



So,
$$I_0 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z-z+1right)^2+pi^2} = 2pi ilim_{ztopi i}{1over2left(e^z-z+1right)left(e^z-1right)} = {1over2}.$$




  • Let us prove that


$$boxed{I_1 = intlimits_{-infty}^{+infty}{dzoverleft(e^z+z+1right)^2+pi^2} = {2over3}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1 + ie^xsin y + iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1right)^2 - left(e^xsin y + yright)^2 + pi^2 = 0\
left(e^xcos y + x + 1right)left(e^xsin y + yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y + x + 1 = 0\
left|e^xsin y + yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



Note that the point $z=pi i$ is a second-order pole, so
$$I_1 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z+z+1right)^2+pi^2} = 2pi ilim_{ztopi i} {dover dz}left({(z-pi i)^2overleft(e^z+z+1right)^2+pi^2}right) = {2over3}.$$
(see also Wolfram Alpha).




  • Let us prove that


$$boxed{I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$



Really,
$$I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z-1overleft(e^z-z+1right)^2+pi^2},dz + I_0$$
$$ = {1overpi}left.arctan{e^z-z-1overpi}right|_{-infty}^{+infty} + {1over 2} = {1over2}.$$




  • Let us prove that


$$boxed{I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2} = {1over3}}$$



Similarly,
$$I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z+1overleft(e^z+z+1right)^2+pi^2},dz - I_1$$
$$ = {1overpi}left.arctan{e^z+z-1overpi}right|_{-infty}^{+infty} - {2over 3} = {1over3}.$$




  • Let us prove that


$$boxed{I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx = 0}$$



Really,
$$I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx$$
$$= intlimits_{-infty}^{+infty}{e^z+1over2}left({1overleft(e^z-z+1right)^2+pi^2} - {1overleft(e^z+z+1right)^2+pi^2}right),dx$$
$$= {I_2+I_0-I_3-I_1over2} = {1over2}left({1over2}+{1over2}-{2over3}-{1over3}right) = 0.$$




  • Let us prove that


$$boxed{I_5 = intlimits_{-infty}^{+infty}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx =
1}$$



The denominator is
$$D(z) = left(left(e^z+1right)^2+z^2
+pi^2 - 2zleft(e^z+1right)right) left(left(e^z+1right)^2+z^2+pi^2 + 2zleft(e^z+1right)right)$$

$$= left(left(e^z+1right)^2+z^2+pi^2right)^2 - 4z^2left(e^z+1right)^2,$$
$$D'(z) = 4left(e^z+z+1right)left(left(e^z+1right)^2+z^2+pi^2right) -8zleft(e^z+1right)left(e^z+z+1right)$$
$$=4left(e^z+z+1right)left(left(e^z-z+1right)^2+pi^2right)$$



The point $z=pi i $ is the simple pole. So,



$$I_5 = 2pi i,mathrm{Res}_{z=pi i}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)}$$
$$ = 2pi i,lim_{ztopi i}{2ze^z(e^z+1)^2over D'(z)} = 1.$$
(see also Wolfram Alpha)



Final calculations



$$I = intlimits_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$
$$= kI_5pm I_4 = k.$$



Finally,
$$boxed{boxed{I = k}}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @ZaidAlyafeai Thank you. Fixed.
    $endgroup$
    – Yuri Negometyanov
    May 12 '17 at 17:28










  • $begingroup$
    Excellent here goes the (+1) .
    $endgroup$
    – Zaid Alyafeai
    May 13 '17 at 1:56



















13












$begingroup$

First note that considering



$$F(k)=int_{-infty}^{+infty}{(ke^xpm1)over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$



Let $x to log(x)$



$$F(k)=int_{0}^{+infty}{(kxpm1) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx = k$$



By separating the integrals note that



$$I_1=int_{0}^{+infty}{1 over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx=0$$



I could prove it numerically using Matlab. Hence I only show




$$I_2=int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$






Consider the function



$$f(z) = frac{(z-1)^2}{(1-(z+log z))(1-(z-log(z))}$$



Integrated around a key-hole contour around the principle branch of the logarithm



$$log(z) = log|z|+imathrm{Arg}(z)$$



Hence the contour



enter image description here



By taking the limits the smaller circle and the bigger one go to zero hence



$$int_{-infty}^{0}frac{(x-1)^2}{(1-(x+log|x|+ipi ))(1-(x-log|x|-ipi)}dx+int_{0}^{-infty}frac{(x-1)^2}{(1-(x+log|x|-ipi ))(1-(x-log|x|+ipi)}dx = 2pi imathrm{Res}(f,1)$$



Convert to the positive limit



$$int_{0}^{infty}frac{(x+1)^2}{(1+x-log x-ipi )(1+x+log x+ipi)}-frac{(x+1)^2}{(1+x-log x+ipi )(1+x+log x-ipi)}dx = 2pi imathrm{Res}(f,1)$$



This magically reduces to our integral



$$int_{0}^{+infty}{4pi ,i log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = 2pi imathrm{Res}(f,1)$$



Note that



$$mathrm{Res}(f,1) = lim_{z to 1}frac{(z-1)^3}{(1-(z+log z))(1-(z-log(z))} = 1$$



Hence we finally get our result



$$int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$





Using the same approach we could show




$$int^infty_{-infty}frac{dx}{(e^x-x+1)^2+pi^2}=frac{1}{2}$$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Aren't you missing an ${i}$ in your definition of complex logarithm?
    $endgroup$
    – Dmoreno
    May 11 '17 at 21:24












  • $begingroup$
    @Dmoreno, yesss, thanks.
    $endgroup$
    – Zaid Alyafeai
    May 11 '17 at 21:25











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2242455%2fhow-can-we-show-that-int-infty-inftykex-pm1-over-pi2ex-x12%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









11





+250







$begingroup$

Some integrals




  • Let us prove that


$$boxed{I_0 = intlimits_{-infty}^{+infty}{dzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1 + ie^xsin y - iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1right)^2 - left(e^xsin y - yright)^2 + pi^2 = 0\
left(e^xcos y - x + 1right)left(e^xsin y - yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y = x - 1\
left|e^xsin y - yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



So,
$$I_0 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z-z+1right)^2+pi^2} = 2pi ilim_{ztopi i}{1over2left(e^z-z+1right)left(e^z-1right)} = {1over2}.$$




  • Let us prove that


$$boxed{I_1 = intlimits_{-infty}^{+infty}{dzoverleft(e^z+z+1right)^2+pi^2} = {2over3}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1 + ie^xsin y + iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1right)^2 - left(e^xsin y + yright)^2 + pi^2 = 0\
left(e^xcos y + x + 1right)left(e^xsin y + yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y + x + 1 = 0\
left|e^xsin y + yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



Note that the point $z=pi i$ is a second-order pole, so
$$I_1 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z+z+1right)^2+pi^2} = 2pi ilim_{ztopi i} {dover dz}left({(z-pi i)^2overleft(e^z+z+1right)^2+pi^2}right) = {2over3}.$$
(see also Wolfram Alpha).




  • Let us prove that


$$boxed{I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$



Really,
$$I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z-1overleft(e^z-z+1right)^2+pi^2},dz + I_0$$
$$ = {1overpi}left.arctan{e^z-z-1overpi}right|_{-infty}^{+infty} + {1over 2} = {1over2}.$$




  • Let us prove that


$$boxed{I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2} = {1over3}}$$



Similarly,
$$I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z+1overleft(e^z+z+1right)^2+pi^2},dz - I_1$$
$$ = {1overpi}left.arctan{e^z+z-1overpi}right|_{-infty}^{+infty} - {2over 3} = {1over3}.$$




  • Let us prove that


$$boxed{I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx = 0}$$



Really,
$$I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx$$
$$= intlimits_{-infty}^{+infty}{e^z+1over2}left({1overleft(e^z-z+1right)^2+pi^2} - {1overleft(e^z+z+1right)^2+pi^2}right),dx$$
$$= {I_2+I_0-I_3-I_1over2} = {1over2}left({1over2}+{1over2}-{2over3}-{1over3}right) = 0.$$




  • Let us prove that


$$boxed{I_5 = intlimits_{-infty}^{+infty}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx =
1}$$



The denominator is
$$D(z) = left(left(e^z+1right)^2+z^2
+pi^2 - 2zleft(e^z+1right)right) left(left(e^z+1right)^2+z^2+pi^2 + 2zleft(e^z+1right)right)$$

$$= left(left(e^z+1right)^2+z^2+pi^2right)^2 - 4z^2left(e^z+1right)^2,$$
$$D'(z) = 4left(e^z+z+1right)left(left(e^z+1right)^2+z^2+pi^2right) -8zleft(e^z+1right)left(e^z+z+1right)$$
$$=4left(e^z+z+1right)left(left(e^z-z+1right)^2+pi^2right)$$



The point $z=pi i $ is the simple pole. So,



$$I_5 = 2pi i,mathrm{Res}_{z=pi i}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)}$$
$$ = 2pi i,lim_{ztopi i}{2ze^z(e^z+1)^2over D'(z)} = 1.$$
(see also Wolfram Alpha)



Final calculations



$$I = intlimits_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$
$$= kI_5pm I_4 = k.$$



Finally,
$$boxed{boxed{I = k}}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @ZaidAlyafeai Thank you. Fixed.
    $endgroup$
    – Yuri Negometyanov
    May 12 '17 at 17:28










  • $begingroup$
    Excellent here goes the (+1) .
    $endgroup$
    – Zaid Alyafeai
    May 13 '17 at 1:56
















11





+250







$begingroup$

Some integrals




  • Let us prove that


$$boxed{I_0 = intlimits_{-infty}^{+infty}{dzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1 + ie^xsin y - iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1right)^2 - left(e^xsin y - yright)^2 + pi^2 = 0\
left(e^xcos y - x + 1right)left(e^xsin y - yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y = x - 1\
left|e^xsin y - yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



So,
$$I_0 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z-z+1right)^2+pi^2} = 2pi ilim_{ztopi i}{1over2left(e^z-z+1right)left(e^z-1right)} = {1over2}.$$




  • Let us prove that


$$boxed{I_1 = intlimits_{-infty}^{+infty}{dzoverleft(e^z+z+1right)^2+pi^2} = {2over3}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1 + ie^xsin y + iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1right)^2 - left(e^xsin y + yright)^2 + pi^2 = 0\
left(e^xcos y + x + 1right)left(e^xsin y + yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y + x + 1 = 0\
left|e^xsin y + yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



Note that the point $z=pi i$ is a second-order pole, so
$$I_1 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z+z+1right)^2+pi^2} = 2pi ilim_{ztopi i} {dover dz}left({(z-pi i)^2overleft(e^z+z+1right)^2+pi^2}right) = {2over3}.$$
(see also Wolfram Alpha).




  • Let us prove that


$$boxed{I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$



Really,
$$I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z-1overleft(e^z-z+1right)^2+pi^2},dz + I_0$$
$$ = {1overpi}left.arctan{e^z-z-1overpi}right|_{-infty}^{+infty} + {1over 2} = {1over2}.$$




  • Let us prove that


$$boxed{I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2} = {1over3}}$$



Similarly,
$$I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z+1overleft(e^z+z+1right)^2+pi^2},dz - I_1$$
$$ = {1overpi}left.arctan{e^z+z-1overpi}right|_{-infty}^{+infty} - {2over 3} = {1over3}.$$




  • Let us prove that


$$boxed{I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx = 0}$$



Really,
$$I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx$$
$$= intlimits_{-infty}^{+infty}{e^z+1over2}left({1overleft(e^z-z+1right)^2+pi^2} - {1overleft(e^z+z+1right)^2+pi^2}right),dx$$
$$= {I_2+I_0-I_3-I_1over2} = {1over2}left({1over2}+{1over2}-{2over3}-{1over3}right) = 0.$$




  • Let us prove that


$$boxed{I_5 = intlimits_{-infty}^{+infty}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx =
1}$$



The denominator is
$$D(z) = left(left(e^z+1right)^2+z^2
+pi^2 - 2zleft(e^z+1right)right) left(left(e^z+1right)^2+z^2+pi^2 + 2zleft(e^z+1right)right)$$

$$= left(left(e^z+1right)^2+z^2+pi^2right)^2 - 4z^2left(e^z+1right)^2,$$
$$D'(z) = 4left(e^z+z+1right)left(left(e^z+1right)^2+z^2+pi^2right) -8zleft(e^z+1right)left(e^z+z+1right)$$
$$=4left(e^z+z+1right)left(left(e^z-z+1right)^2+pi^2right)$$



The point $z=pi i $ is the simple pole. So,



$$I_5 = 2pi i,mathrm{Res}_{z=pi i}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)}$$
$$ = 2pi i,lim_{ztopi i}{2ze^z(e^z+1)^2over D'(z)} = 1.$$
(see also Wolfram Alpha)



Final calculations



$$I = intlimits_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$
$$= kI_5pm I_4 = k.$$



Finally,
$$boxed{boxed{I = k}}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @ZaidAlyafeai Thank you. Fixed.
    $endgroup$
    – Yuri Negometyanov
    May 12 '17 at 17:28










  • $begingroup$
    Excellent here goes the (+1) .
    $endgroup$
    – Zaid Alyafeai
    May 13 '17 at 1:56














11





+250







11





+250



11




+250



$begingroup$

Some integrals




  • Let us prove that


$$boxed{I_0 = intlimits_{-infty}^{+infty}{dzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1 + ie^xsin y - iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1right)^2 - left(e^xsin y - yright)^2 + pi^2 = 0\
left(e^xcos y - x + 1right)left(e^xsin y - yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y = x - 1\
left|e^xsin y - yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



So,
$$I_0 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z-z+1right)^2+pi^2} = 2pi ilim_{ztopi i}{1over2left(e^z-z+1right)left(e^z-1right)} = {1over2}.$$




  • Let us prove that


$$boxed{I_1 = intlimits_{-infty}^{+infty}{dzoverleft(e^z+z+1right)^2+pi^2} = {2over3}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1 + ie^xsin y + iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1right)^2 - left(e^xsin y + yright)^2 + pi^2 = 0\
left(e^xcos y + x + 1right)left(e^xsin y + yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y + x + 1 = 0\
left|e^xsin y + yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



Note that the point $z=pi i$ is a second-order pole, so
$$I_1 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z+z+1right)^2+pi^2} = 2pi ilim_{ztopi i} {dover dz}left({(z-pi i)^2overleft(e^z+z+1right)^2+pi^2}right) = {2over3}.$$
(see also Wolfram Alpha).




  • Let us prove that


$$boxed{I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$



Really,
$$I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z-1overleft(e^z-z+1right)^2+pi^2},dz + I_0$$
$$ = {1overpi}left.arctan{e^z-z-1overpi}right|_{-infty}^{+infty} + {1over 2} = {1over2}.$$




  • Let us prove that


$$boxed{I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2} = {1over3}}$$



Similarly,
$$I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z+1overleft(e^z+z+1right)^2+pi^2},dz - I_1$$
$$ = {1overpi}left.arctan{e^z+z-1overpi}right|_{-infty}^{+infty} - {2over 3} = {1over3}.$$




  • Let us prove that


$$boxed{I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx = 0}$$



Really,
$$I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx$$
$$= intlimits_{-infty}^{+infty}{e^z+1over2}left({1overleft(e^z-z+1right)^2+pi^2} - {1overleft(e^z+z+1right)^2+pi^2}right),dx$$
$$= {I_2+I_0-I_3-I_1over2} = {1over2}left({1over2}+{1over2}-{2over3}-{1over3}right) = 0.$$




  • Let us prove that


$$boxed{I_5 = intlimits_{-infty}^{+infty}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx =
1}$$



The denominator is
$$D(z) = left(left(e^z+1right)^2+z^2
+pi^2 - 2zleft(e^z+1right)right) left(left(e^z+1right)^2+z^2+pi^2 + 2zleft(e^z+1right)right)$$

$$= left(left(e^z+1right)^2+z^2+pi^2right)^2 - 4z^2left(e^z+1right)^2,$$
$$D'(z) = 4left(e^z+z+1right)left(left(e^z+1right)^2+z^2+pi^2right) -8zleft(e^z+1right)left(e^z+z+1right)$$
$$=4left(e^z+z+1right)left(left(e^z-z+1right)^2+pi^2right)$$



The point $z=pi i $ is the simple pole. So,



$$I_5 = 2pi i,mathrm{Res}_{z=pi i}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)}$$
$$ = 2pi i,lim_{ztopi i}{2ze^z(e^z+1)^2over D'(z)} = 1.$$
(see also Wolfram Alpha)



Final calculations



$$I = intlimits_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$
$$= kI_5pm I_4 = k.$$



Finally,
$$boxed{boxed{I = k}}$$






share|cite|improve this answer











$endgroup$



Some integrals




  • Let us prove that


$$boxed{I_0 = intlimits_{-infty}^{+infty}{dzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1 + ie^xsin y - iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y - x + 1right)^2 - left(e^xsin y - yright)^2 + pi^2 = 0\
left(e^xcos y - x + 1right)left(e^xsin y - yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y = x - 1\
left|e^xsin y - yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



So,
$$I_0 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z-z+1right)^2+pi^2} = 2pi ilim_{ztopi i}{1over2left(e^z-z+1right)left(e^z-1right)} = {1over2}.$$




  • Let us prove that


$$boxed{I_1 = intlimits_{-infty}^{+infty}{dzoverleft(e^z+z+1right)^2+pi^2} = {2over3}}$$
Roots of the denominator can be defined from the system
$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1 + ie^xsin y + iyright)^2 + pi^2 = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
left(e^xcos y + x + 1right)^2 - left(e^xsin y + yright)^2 + pi^2 = 0\
left(e^xcos y + x + 1right)left(e^xsin y + yright) = 0,
end{cases}$$

$$begin{cases}
z=x+iy\
e^xcos y + x + 1 = 0\
left|e^xsin y + yright| = pi,
end{cases}$$

with the solutions $z=pmpi i$ (see also Wolfram Alpha).



Note that the point $z=pi i$ is a second-order pole, so
$$I_1 = 2pi i,mathrm{Res}_{z=pi i}{1overleft(e^z+z+1right)^2+pi^2} = 2pi ilim_{ztopi i} {dover dz}left({(z-pi i)^2overleft(e^z+z+1right)^2+pi^2}right) = {2over3}.$$
(see also Wolfram Alpha).




  • Let us prove that


$$boxed{I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2} = {1over2}}$$



Really,
$$I_2 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z-z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z-1overleft(e^z-z+1right)^2+pi^2},dz + I_0$$
$$ = {1overpi}left.arctan{e^z-z-1overpi}right|_{-infty}^{+infty} + {1over 2} = {1over2}.$$




  • Let us prove that


$$boxed{I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2} = {1over3}}$$



Similarly,
$$I_3 = intlimits_{-infty}^{+infty}{e^zdzoverleft(e^z+z+1right)^2+pi^2}= intlimits_{-infty}^{+infty}{e^z+1overleft(e^z+z+1right)^2+pi^2},dz - I_1$$
$$ = {1overpi}left.arctan{e^z+z-1overpi}right|_{-infty}^{+infty} - {2over 3} = {1over3}.$$




  • Let us prove that


$$boxed{I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx = 0}$$



Really,
$$I_4 = intlimits_{-infty}^{+infty}{2z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx$$
$$= intlimits_{-infty}^{+infty}{e^z+1over2}left({1overleft(e^z-z+1right)^2+pi^2} - {1overleft(e^z+z+1right)^2+pi^2}right),dx$$
$$= {I_2+I_0-I_3-I_1over2} = {1over2}left({1over2}+{1over2}-{2over3}-{1over3}right) = 0.$$




  • Let us prove that


$$boxed{I_5 = intlimits_{-infty}^{+infty}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)},dx =
1}$$



The denominator is
$$D(z) = left(left(e^z+1right)^2+z^2
+pi^2 - 2zleft(e^z+1right)right) left(left(e^z+1right)^2+z^2+pi^2 + 2zleft(e^z+1right)right)$$

$$= left(left(e^z+1right)^2+z^2+pi^2right)^2 - 4z^2left(e^z+1right)^2,$$
$$D'(z) = 4left(e^z+z+1right)left(left(e^z+1right)^2+z^2+pi^2right) -8zleft(e^z+1right)left(e^z+z+1right)$$
$$=4left(e^z+z+1right)left(left(e^z-z+1right)^2+pi^2right)$$



The point $z=pi i $ is the simple pole. So,



$$I_5 = 2pi i,mathrm{Res}_{z=pi i}{2ze^z(e^z+1)^2overleft(left(e^z-z+1right)^2+pi^2right)left(left(e^z+z+1right)^2+pi^2right)}$$
$$ = 2pi i,lim_{ztopi i}{2ze^z(e^z+1)^2over D'(z)} = 1.$$
(see also Wolfram Alpha)



Final calculations



$$I = intlimits_{-infty}^{+infty}{ke^xpm1over pi^2+(e^x-x+1)}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$
$$= kI_5pm I_4 = k.$$



Finally,
$$boxed{boxed{I = k}}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 5 '18 at 1:54

























answered May 12 '17 at 13:50









Yuri NegometyanovYuri Negometyanov

11.2k1728




11.2k1728












  • $begingroup$
    @ZaidAlyafeai Thank you. Fixed.
    $endgroup$
    – Yuri Negometyanov
    May 12 '17 at 17:28










  • $begingroup$
    Excellent here goes the (+1) .
    $endgroup$
    – Zaid Alyafeai
    May 13 '17 at 1:56


















  • $begingroup$
    @ZaidAlyafeai Thank you. Fixed.
    $endgroup$
    – Yuri Negometyanov
    May 12 '17 at 17:28










  • $begingroup$
    Excellent here goes the (+1) .
    $endgroup$
    – Zaid Alyafeai
    May 13 '17 at 1:56
















$begingroup$
@ZaidAlyafeai Thank you. Fixed.
$endgroup$
– Yuri Negometyanov
May 12 '17 at 17:28




$begingroup$
@ZaidAlyafeai Thank you. Fixed.
$endgroup$
– Yuri Negometyanov
May 12 '17 at 17:28












$begingroup$
Excellent here goes the (+1) .
$endgroup$
– Zaid Alyafeai
May 13 '17 at 1:56




$begingroup$
Excellent here goes the (+1) .
$endgroup$
– Zaid Alyafeai
May 13 '17 at 1:56











13












$begingroup$

First note that considering



$$F(k)=int_{-infty}^{+infty}{(ke^xpm1)over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$



Let $x to log(x)$



$$F(k)=int_{0}^{+infty}{(kxpm1) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx = k$$



By separating the integrals note that



$$I_1=int_{0}^{+infty}{1 over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx=0$$



I could prove it numerically using Matlab. Hence I only show




$$I_2=int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$






Consider the function



$$f(z) = frac{(z-1)^2}{(1-(z+log z))(1-(z-log(z))}$$



Integrated around a key-hole contour around the principle branch of the logarithm



$$log(z) = log|z|+imathrm{Arg}(z)$$



Hence the contour



enter image description here



By taking the limits the smaller circle and the bigger one go to zero hence



$$int_{-infty}^{0}frac{(x-1)^2}{(1-(x+log|x|+ipi ))(1-(x-log|x|-ipi)}dx+int_{0}^{-infty}frac{(x-1)^2}{(1-(x+log|x|-ipi ))(1-(x-log|x|+ipi)}dx = 2pi imathrm{Res}(f,1)$$



Convert to the positive limit



$$int_{0}^{infty}frac{(x+1)^2}{(1+x-log x-ipi )(1+x+log x+ipi)}-frac{(x+1)^2}{(1+x-log x+ipi )(1+x+log x-ipi)}dx = 2pi imathrm{Res}(f,1)$$



This magically reduces to our integral



$$int_{0}^{+infty}{4pi ,i log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = 2pi imathrm{Res}(f,1)$$



Note that



$$mathrm{Res}(f,1) = lim_{z to 1}frac{(z-1)^3}{(1-(z+log z))(1-(z-log(z))} = 1$$



Hence we finally get our result



$$int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$





Using the same approach we could show




$$int^infty_{-infty}frac{dx}{(e^x-x+1)^2+pi^2}=frac{1}{2}$$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Aren't you missing an ${i}$ in your definition of complex logarithm?
    $endgroup$
    – Dmoreno
    May 11 '17 at 21:24












  • $begingroup$
    @Dmoreno, yesss, thanks.
    $endgroup$
    – Zaid Alyafeai
    May 11 '17 at 21:25
















13












$begingroup$

First note that considering



$$F(k)=int_{-infty}^{+infty}{(ke^xpm1)over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$



Let $x to log(x)$



$$F(k)=int_{0}^{+infty}{(kxpm1) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx = k$$



By separating the integrals note that



$$I_1=int_{0}^{+infty}{1 over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx=0$$



I could prove it numerically using Matlab. Hence I only show




$$I_2=int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$






Consider the function



$$f(z) = frac{(z-1)^2}{(1-(z+log z))(1-(z-log(z))}$$



Integrated around a key-hole contour around the principle branch of the logarithm



$$log(z) = log|z|+imathrm{Arg}(z)$$



Hence the contour



enter image description here



By taking the limits the smaller circle and the bigger one go to zero hence



$$int_{-infty}^{0}frac{(x-1)^2}{(1-(x+log|x|+ipi ))(1-(x-log|x|-ipi)}dx+int_{0}^{-infty}frac{(x-1)^2}{(1-(x+log|x|-ipi ))(1-(x-log|x|+ipi)}dx = 2pi imathrm{Res}(f,1)$$



Convert to the positive limit



$$int_{0}^{infty}frac{(x+1)^2}{(1+x-log x-ipi )(1+x+log x+ipi)}-frac{(x+1)^2}{(1+x-log x+ipi )(1+x+log x-ipi)}dx = 2pi imathrm{Res}(f,1)$$



This magically reduces to our integral



$$int_{0}^{+infty}{4pi ,i log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = 2pi imathrm{Res}(f,1)$$



Note that



$$mathrm{Res}(f,1) = lim_{z to 1}frac{(z-1)^3}{(1-(z+log z))(1-(z-log(z))} = 1$$



Hence we finally get our result



$$int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$





Using the same approach we could show




$$int^infty_{-infty}frac{dx}{(e^x-x+1)^2+pi^2}=frac{1}{2}$$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Aren't you missing an ${i}$ in your definition of complex logarithm?
    $endgroup$
    – Dmoreno
    May 11 '17 at 21:24












  • $begingroup$
    @Dmoreno, yesss, thanks.
    $endgroup$
    – Zaid Alyafeai
    May 11 '17 at 21:25














13












13








13





$begingroup$

First note that considering



$$F(k)=int_{-infty}^{+infty}{(ke^xpm1)over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$



Let $x to log(x)$



$$F(k)=int_{0}^{+infty}{(kxpm1) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx = k$$



By separating the integrals note that



$$I_1=int_{0}^{+infty}{1 over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx=0$$



I could prove it numerically using Matlab. Hence I only show




$$I_2=int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$






Consider the function



$$f(z) = frac{(z-1)^2}{(1-(z+log z))(1-(z-log(z))}$$



Integrated around a key-hole contour around the principle branch of the logarithm



$$log(z) = log|z|+imathrm{Arg}(z)$$



Hence the contour



enter image description here



By taking the limits the smaller circle and the bigger one go to zero hence



$$int_{-infty}^{0}frac{(x-1)^2}{(1-(x+log|x|+ipi ))(1-(x-log|x|-ipi)}dx+int_{0}^{-infty}frac{(x-1)^2}{(1-(x+log|x|-ipi ))(1-(x-log|x|+ipi)}dx = 2pi imathrm{Res}(f,1)$$



Convert to the positive limit



$$int_{0}^{infty}frac{(x+1)^2}{(1+x-log x-ipi )(1+x+log x+ipi)}-frac{(x+1)^2}{(1+x-log x+ipi )(1+x+log x-ipi)}dx = 2pi imathrm{Res}(f,1)$$



This magically reduces to our integral



$$int_{0}^{+infty}{4pi ,i log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = 2pi imathrm{Res}(f,1)$$



Note that



$$mathrm{Res}(f,1) = lim_{z to 1}frac{(z-1)^3}{(1-(z+log z))(1-(z-log(z))} = 1$$



Hence we finally get our result



$$int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$





Using the same approach we could show




$$int^infty_{-infty}frac{dx}{(e^x-x+1)^2+pi^2}=frac{1}{2}$$







share|cite|improve this answer











$endgroup$



First note that considering



$$F(k)=int_{-infty}^{+infty}{(ke^xpm1)over pi^2+(e^x-x+1)^2}cdot{(e^x+1)^2over pi^2+(e^x+x+1)^2}cdot 2x mathrm dx$$



Let $x to log(x)$



$$F(k)=int_{0}^{+infty}{(kxpm1) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx = k$$



By separating the integrals note that



$$I_1=int_{0}^{+infty}{1 over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot frac{2log(x)}{x} mathrm dx=0$$



I could prove it numerically using Matlab. Hence I only show




$$I_2=int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$






Consider the function



$$f(z) = frac{(z-1)^2}{(1-(z+log z))(1-(z-log(z))}$$



Integrated around a key-hole contour around the principle branch of the logarithm



$$log(z) = log|z|+imathrm{Arg}(z)$$



Hence the contour



enter image description here



By taking the limits the smaller circle and the bigger one go to zero hence



$$int_{-infty}^{0}frac{(x-1)^2}{(1-(x+log|x|+ipi ))(1-(x-log|x|-ipi)}dx+int_{0}^{-infty}frac{(x-1)^2}{(1-(x+log|x|-ipi ))(1-(x-log|x|+ipi)}dx = 2pi imathrm{Res}(f,1)$$



Convert to the positive limit



$$int_{0}^{infty}frac{(x+1)^2}{(1+x-log x-ipi )(1+x+log x+ipi)}-frac{(x+1)^2}{(1+x-log x+ipi )(1+x+log x-ipi)}dx = 2pi imathrm{Res}(f,1)$$



This magically reduces to our integral



$$int_{0}^{+infty}{4pi ,i log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = 2pi imathrm{Res}(f,1)$$



Note that



$$mathrm{Res}(f,1) = lim_{z to 1}frac{(z-1)^3}{(1-(z+log z))(1-(z-log(z))} = 1$$



Hence we finally get our result



$$int_{0}^{+infty}{log(x) over pi^2+(x-log(x)+1)^2}cdot{(x+1)^2over pi^2+(x+log(x)+1)^2}cdot mathrm dx = frac{1}{2}$$





Using the same approach we could show




$$int^infty_{-infty}frac{dx}{(e^x-x+1)^2+pi^2}=frac{1}{2}$$








share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited May 12 '17 at 0:42

























answered May 11 '17 at 21:15









Zaid AlyafeaiZaid Alyafeai

9,35122370




9,35122370












  • $begingroup$
    Aren't you missing an ${i}$ in your definition of complex logarithm?
    $endgroup$
    – Dmoreno
    May 11 '17 at 21:24












  • $begingroup$
    @Dmoreno, yesss, thanks.
    $endgroup$
    – Zaid Alyafeai
    May 11 '17 at 21:25


















  • $begingroup$
    Aren't you missing an ${i}$ in your definition of complex logarithm?
    $endgroup$
    – Dmoreno
    May 11 '17 at 21:24












  • $begingroup$
    @Dmoreno, yesss, thanks.
    $endgroup$
    – Zaid Alyafeai
    May 11 '17 at 21:25
















$begingroup$
Aren't you missing an ${i}$ in your definition of complex logarithm?
$endgroup$
– Dmoreno
May 11 '17 at 21:24






$begingroup$
Aren't you missing an ${i}$ in your definition of complex logarithm?
$endgroup$
– Dmoreno
May 11 '17 at 21:24














$begingroup$
@Dmoreno, yesss, thanks.
$endgroup$
– Zaid Alyafeai
May 11 '17 at 21:25




$begingroup$
@Dmoreno, yesss, thanks.
$endgroup$
– Zaid Alyafeai
May 11 '17 at 21:25


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2242455%2fhow-can-we-show-that-int-infty-inftykex-pm1-over-pi2ex-x12%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten