Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$.
$begingroup$
Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$. G can be finite or infinite. Notice this is a bit like Fisrt Homomorphsm Theorem, I tried to prove it like the way done in this theorem , but failed. Is there a counterexample?
abstract-algebra
$endgroup$
add a comment |
$begingroup$
Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$. G can be finite or infinite. Notice this is a bit like Fisrt Homomorphsm Theorem, I tried to prove it like the way done in this theorem , but failed. Is there a counterexample?
abstract-algebra
$endgroup$
add a comment |
$begingroup$
Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$. G can be finite or infinite. Notice this is a bit like Fisrt Homomorphsm Theorem, I tried to prove it like the way done in this theorem , but failed. Is there a counterexample?
abstract-algebra
$endgroup$
Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$. G can be finite or infinite. Notice this is a bit like Fisrt Homomorphsm Theorem, I tried to prove it like the way done in this theorem , but failed. Is there a counterexample?
abstract-algebra
abstract-algebra
asked Dec 3 '18 at 6:05
LOISLOIS
3838
3838
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.
$endgroup$
$begingroup$
what if G is infinite?
$endgroup$
– LOIS
Dec 3 '18 at 8:09
$begingroup$
@LOIS Still no. Just take a similar example (cyclic group).
$endgroup$
– Tobias Kildetoft
Dec 3 '18 at 9:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023704%2flet-g-be-an-abelian-group-and-a-subgroup-h-le-g-is-g-isomorphic-to-h-ti%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.
$endgroup$
$begingroup$
what if G is infinite?
$endgroup$
– LOIS
Dec 3 '18 at 8:09
$begingroup$
@LOIS Still no. Just take a similar example (cyclic group).
$endgroup$
– Tobias Kildetoft
Dec 3 '18 at 9:29
add a comment |
$begingroup$
Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.
$endgroup$
$begingroup$
what if G is infinite?
$endgroup$
– LOIS
Dec 3 '18 at 8:09
$begingroup$
@LOIS Still no. Just take a similar example (cyclic group).
$endgroup$
– Tobias Kildetoft
Dec 3 '18 at 9:29
add a comment |
$begingroup$
Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.
$endgroup$
Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.
answered Dec 3 '18 at 6:09
MathematicsStudent1122MathematicsStudent1122
8,60822467
8,60822467
$begingroup$
what if G is infinite?
$endgroup$
– LOIS
Dec 3 '18 at 8:09
$begingroup$
@LOIS Still no. Just take a similar example (cyclic group).
$endgroup$
– Tobias Kildetoft
Dec 3 '18 at 9:29
add a comment |
$begingroup$
what if G is infinite?
$endgroup$
– LOIS
Dec 3 '18 at 8:09
$begingroup$
@LOIS Still no. Just take a similar example (cyclic group).
$endgroup$
– Tobias Kildetoft
Dec 3 '18 at 9:29
$begingroup$
what if G is infinite?
$endgroup$
– LOIS
Dec 3 '18 at 8:09
$begingroup$
what if G is infinite?
$endgroup$
– LOIS
Dec 3 '18 at 8:09
$begingroup$
@LOIS Still no. Just take a similar example (cyclic group).
$endgroup$
– Tobias Kildetoft
Dec 3 '18 at 9:29
$begingroup$
@LOIS Still no. Just take a similar example (cyclic group).
$endgroup$
– Tobias Kildetoft
Dec 3 '18 at 9:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023704%2flet-g-be-an-abelian-group-and-a-subgroup-h-le-g-is-g-isomorphic-to-h-ti%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown