Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$.












0












$begingroup$


Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$. G can be finite or infinite. Notice this is a bit like Fisrt Homomorphsm Theorem, I tried to prove it like the way done in this theorem , but failed. Is there a counterexample?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$. G can be finite or infinite. Notice this is a bit like Fisrt Homomorphsm Theorem, I tried to prove it like the way done in this theorem , but failed. Is there a counterexample?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$. G can be finite or infinite. Notice this is a bit like Fisrt Homomorphsm Theorem, I tried to prove it like the way done in this theorem , but failed. Is there a counterexample?










      share|cite|improve this question









      $endgroup$




      Let $G$ be an abelian group and a subgroup $Hle G$ . Is $G$ isomorphic to $Htimes (G/H)$. G can be finite or infinite. Notice this is a bit like Fisrt Homomorphsm Theorem, I tried to prove it like the way done in this theorem , but failed. Is there a counterexample?







      abstract-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 3 '18 at 6:05









      LOISLOIS

      3838




      3838






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            what if G is infinite?
            $endgroup$
            – LOIS
            Dec 3 '18 at 8:09










          • $begingroup$
            @LOIS Still no. Just take a similar example (cyclic group).
            $endgroup$
            – Tobias Kildetoft
            Dec 3 '18 at 9:29











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023704%2flet-g-be-an-abelian-group-and-a-subgroup-h-le-g-is-g-isomorphic-to-h-ti%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            what if G is infinite?
            $endgroup$
            – LOIS
            Dec 3 '18 at 8:09










          • $begingroup$
            @LOIS Still no. Just take a similar example (cyclic group).
            $endgroup$
            – Tobias Kildetoft
            Dec 3 '18 at 9:29
















          4












          $begingroup$

          Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            what if G is infinite?
            $endgroup$
            – LOIS
            Dec 3 '18 at 8:09










          • $begingroup$
            @LOIS Still no. Just take a similar example (cyclic group).
            $endgroup$
            – Tobias Kildetoft
            Dec 3 '18 at 9:29














          4












          4








          4





          $begingroup$

          Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.






          share|cite|improve this answer









          $endgroup$



          Not in general, no. Let $G=mathbb{Z}_4$ and $H= langle 2 rangle$. Then $H times G/H cong mathbb{Z}_2 times mathbb{Z}_2$ is not isomorphic to $mathbb{Z}_4$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 3 '18 at 6:09









          MathematicsStudent1122MathematicsStudent1122

          8,60822467




          8,60822467












          • $begingroup$
            what if G is infinite?
            $endgroup$
            – LOIS
            Dec 3 '18 at 8:09










          • $begingroup$
            @LOIS Still no. Just take a similar example (cyclic group).
            $endgroup$
            – Tobias Kildetoft
            Dec 3 '18 at 9:29


















          • $begingroup$
            what if G is infinite?
            $endgroup$
            – LOIS
            Dec 3 '18 at 8:09










          • $begingroup$
            @LOIS Still no. Just take a similar example (cyclic group).
            $endgroup$
            – Tobias Kildetoft
            Dec 3 '18 at 9:29
















          $begingroup$
          what if G is infinite?
          $endgroup$
          – LOIS
          Dec 3 '18 at 8:09




          $begingroup$
          what if G is infinite?
          $endgroup$
          – LOIS
          Dec 3 '18 at 8:09












          $begingroup$
          @LOIS Still no. Just take a similar example (cyclic group).
          $endgroup$
          – Tobias Kildetoft
          Dec 3 '18 at 9:29




          $begingroup$
          @LOIS Still no. Just take a similar example (cyclic group).
          $endgroup$
          – Tobias Kildetoft
          Dec 3 '18 at 9:29


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023704%2flet-g-be-an-abelian-group-and-a-subgroup-h-le-g-is-g-isomorphic-to-h-ti%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten