Let $I=[0, infty)$ and $f:I to R$ a mensurable function such that $|f(t)| leq frac{t^alpha}{1+t}$, where $0...
$begingroup$
Let $I=[0, infty)$ and $f:I to mathbb{R}$ be a mensurable function such that $|f(t)| leq frac{t^alpha}{1+t}$, where $0 <alpha <1$. Show that the function $e^{-tx}f(t)$ is integrable in $I times I$.
I was trying to show that the module is integrable using Tonelli, but I did not succeed.
real-analysis calculus lebesgue-integral
$endgroup$
add a comment |
$begingroup$
Let $I=[0, infty)$ and $f:I to mathbb{R}$ be a mensurable function such that $|f(t)| leq frac{t^alpha}{1+t}$, where $0 <alpha <1$. Show that the function $e^{-tx}f(t)$ is integrable in $I times I$.
I was trying to show that the module is integrable using Tonelli, but I did not succeed.
real-analysis calculus lebesgue-integral
$endgroup$
add a comment |
$begingroup$
Let $I=[0, infty)$ and $f:I to mathbb{R}$ be a mensurable function such that $|f(t)| leq frac{t^alpha}{1+t}$, where $0 <alpha <1$. Show that the function $e^{-tx}f(t)$ is integrable in $I times I$.
I was trying to show that the module is integrable using Tonelli, but I did not succeed.
real-analysis calculus lebesgue-integral
$endgroup$
Let $I=[0, infty)$ and $f:I to mathbb{R}$ be a mensurable function such that $|f(t)| leq frac{t^alpha}{1+t}$, where $0 <alpha <1$. Show that the function $e^{-tx}f(t)$ is integrable in $I times I$.
I was trying to show that the module is integrable using Tonelli, but I did not succeed.
real-analysis calculus lebesgue-integral
real-analysis calculus lebesgue-integral
asked Dec 3 '18 at 14:00
LucasLucas
275
275
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Just calculate:
$int_I{int_I{e^{-tx}frac{t^alpha}{1+t}dx}dt} = int_I{frac{t^alpha}{1+t}int_I{e^{-tx}dx}dt} = int_I{frac{t^alpha}{1+t}frac{1}{t}dt} < int_{0}^{1}{t^{alpha-1}dt} + int_{1}^{infty}{t^{alpha-2}dt} = frac{1}{alpha} + frac{1}{1-alpha} < infty. $
Note that I used inequality $1+t>1, 1+t>t$ respectively for two divided interval $(0,1)$ and $(1,infty)$ for $t.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024093%2flet-i-0-infty-and-fi-to-r-a-mensurable-function-such-that-ft-leq%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Just calculate:
$int_I{int_I{e^{-tx}frac{t^alpha}{1+t}dx}dt} = int_I{frac{t^alpha}{1+t}int_I{e^{-tx}dx}dt} = int_I{frac{t^alpha}{1+t}frac{1}{t}dt} < int_{0}^{1}{t^{alpha-1}dt} + int_{1}^{infty}{t^{alpha-2}dt} = frac{1}{alpha} + frac{1}{1-alpha} < infty. $
Note that I used inequality $1+t>1, 1+t>t$ respectively for two divided interval $(0,1)$ and $(1,infty)$ for $t.$
$endgroup$
add a comment |
$begingroup$
Just calculate:
$int_I{int_I{e^{-tx}frac{t^alpha}{1+t}dx}dt} = int_I{frac{t^alpha}{1+t}int_I{e^{-tx}dx}dt} = int_I{frac{t^alpha}{1+t}frac{1}{t}dt} < int_{0}^{1}{t^{alpha-1}dt} + int_{1}^{infty}{t^{alpha-2}dt} = frac{1}{alpha} + frac{1}{1-alpha} < infty. $
Note that I used inequality $1+t>1, 1+t>t$ respectively for two divided interval $(0,1)$ and $(1,infty)$ for $t.$
$endgroup$
add a comment |
$begingroup$
Just calculate:
$int_I{int_I{e^{-tx}frac{t^alpha}{1+t}dx}dt} = int_I{frac{t^alpha}{1+t}int_I{e^{-tx}dx}dt} = int_I{frac{t^alpha}{1+t}frac{1}{t}dt} < int_{0}^{1}{t^{alpha-1}dt} + int_{1}^{infty}{t^{alpha-2}dt} = frac{1}{alpha} + frac{1}{1-alpha} < infty. $
Note that I used inequality $1+t>1, 1+t>t$ respectively for two divided interval $(0,1)$ and $(1,infty)$ for $t.$
$endgroup$
Just calculate:
$int_I{int_I{e^{-tx}frac{t^alpha}{1+t}dx}dt} = int_I{frac{t^alpha}{1+t}int_I{e^{-tx}dx}dt} = int_I{frac{t^alpha}{1+t}frac{1}{t}dt} < int_{0}^{1}{t^{alpha-1}dt} + int_{1}^{infty}{t^{alpha-2}dt} = frac{1}{alpha} + frac{1}{1-alpha} < infty. $
Note that I used inequality $1+t>1, 1+t>t$ respectively for two divided interval $(0,1)$ and $(1,infty)$ for $t.$
answered Dec 3 '18 at 14:30
EuduardoEuduardo
1288
1288
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024093%2flet-i-0-infty-and-fi-to-r-a-mensurable-function-such-that-ft-leq%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown