Find $2times 2$ symmetric matrix $A$ given two eigenvalues and one eigenvector
$begingroup$
I am having trouble finding the symmetric matrix $A$ given eigenvalues $1$ and $4$ and eigenvector $(1, 1)$ corresponding to eigenvalue $1$.
I feel like I'd have to use the equation $A=PD(P^{-1})$, but I'm having trouble finding the matrix $P$ if I can't find the second eigenvector.
Any help is appreciated, thanks!
linear-algebra eigenvalues-eigenvectors
$endgroup$
add a comment |
$begingroup$
I am having trouble finding the symmetric matrix $A$ given eigenvalues $1$ and $4$ and eigenvector $(1, 1)$ corresponding to eigenvalue $1$.
I feel like I'd have to use the equation $A=PD(P^{-1})$, but I'm having trouble finding the matrix $P$ if I can't find the second eigenvector.
Any help is appreciated, thanks!
linear-algebra eigenvalues-eigenvectors
$endgroup$
3
$begingroup$
Different eigenspaces of a symmetric matrix are orthogonal to each other.
$endgroup$
– Berci
Dec 7 '18 at 21:54
1
$begingroup$
...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
$endgroup$
– Jean Marie
Dec 7 '18 at 22:04
add a comment |
$begingroup$
I am having trouble finding the symmetric matrix $A$ given eigenvalues $1$ and $4$ and eigenvector $(1, 1)$ corresponding to eigenvalue $1$.
I feel like I'd have to use the equation $A=PD(P^{-1})$, but I'm having trouble finding the matrix $P$ if I can't find the second eigenvector.
Any help is appreciated, thanks!
linear-algebra eigenvalues-eigenvectors
$endgroup$
I am having trouble finding the symmetric matrix $A$ given eigenvalues $1$ and $4$ and eigenvector $(1, 1)$ corresponding to eigenvalue $1$.
I feel like I'd have to use the equation $A=PD(P^{-1})$, but I'm having trouble finding the matrix $P$ if I can't find the second eigenvector.
Any help is appreciated, thanks!
linear-algebra eigenvalues-eigenvectors
linear-algebra eigenvalues-eigenvectors
edited Dec 7 '18 at 22:06
user376343
3,7383827
3,7383827
asked Dec 7 '18 at 21:52
a hea he
61
61
3
$begingroup$
Different eigenspaces of a symmetric matrix are orthogonal to each other.
$endgroup$
– Berci
Dec 7 '18 at 21:54
1
$begingroup$
...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
$endgroup$
– Jean Marie
Dec 7 '18 at 22:04
add a comment |
3
$begingroup$
Different eigenspaces of a symmetric matrix are orthogonal to each other.
$endgroup$
– Berci
Dec 7 '18 at 21:54
1
$begingroup$
...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
$endgroup$
– Jean Marie
Dec 7 '18 at 22:04
3
3
$begingroup$
Different eigenspaces of a symmetric matrix are orthogonal to each other.
$endgroup$
– Berci
Dec 7 '18 at 21:54
$begingroup$
Different eigenspaces of a symmetric matrix are orthogonal to each other.
$endgroup$
– Berci
Dec 7 '18 at 21:54
1
1
$begingroup$
...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
$endgroup$
– Jean Marie
Dec 7 '18 at 22:04
$begingroup$
...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
$endgroup$
– Jean Marie
Dec 7 '18 at 22:04
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
To offer a slightly different perspective, due to the Spectral Theorem you have
$$
A=P_1+4P_2,$$
where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
$$
P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
$$
And then
$$
A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
$$
$endgroup$
add a comment |
$begingroup$
Let :
$$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$
Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be
$$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$
such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :
$$(a-lambda)(d-lambda)-bc=0$$
Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :
$$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$
$$Leftrightarrow$$
$$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$
Can you now find $a,b,c$ and $d$ ?
$endgroup$
$begingroup$
Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
$endgroup$
– M. A. SARKAR
Dec 7 '18 at 22:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030404%2ffind-2-times-2-symmetric-matrix-a-given-two-eigenvalues-and-one-eigenvector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To offer a slightly different perspective, due to the Spectral Theorem you have
$$
A=P_1+4P_2,$$
where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
$$
P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
$$
And then
$$
A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
$$
$endgroup$
add a comment |
$begingroup$
To offer a slightly different perspective, due to the Spectral Theorem you have
$$
A=P_1+4P_2,$$
where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
$$
P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
$$
And then
$$
A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
$$
$endgroup$
add a comment |
$begingroup$
To offer a slightly different perspective, due to the Spectral Theorem you have
$$
A=P_1+4P_2,$$
where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
$$
P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
$$
And then
$$
A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
$$
$endgroup$
To offer a slightly different perspective, due to the Spectral Theorem you have
$$
A=P_1+4P_2,$$
where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
$$
P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
$$
And then
$$
A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
$$
answered Dec 7 '18 at 22:12
Martin ArgeramiMartin Argerami
127k1182181
127k1182181
add a comment |
add a comment |
$begingroup$
Let :
$$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$
Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be
$$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$
such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :
$$(a-lambda)(d-lambda)-bc=0$$
Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :
$$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$
$$Leftrightarrow$$
$$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$
Can you now find $a,b,c$ and $d$ ?
$endgroup$
$begingroup$
Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
$endgroup$
– M. A. SARKAR
Dec 7 '18 at 22:10
add a comment |
$begingroup$
Let :
$$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$
Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be
$$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$
such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :
$$(a-lambda)(d-lambda)-bc=0$$
Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :
$$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$
$$Leftrightarrow$$
$$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$
Can you now find $a,b,c$ and $d$ ?
$endgroup$
$begingroup$
Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
$endgroup$
– M. A. SARKAR
Dec 7 '18 at 22:10
add a comment |
$begingroup$
Let :
$$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$
Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be
$$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$
such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :
$$(a-lambda)(d-lambda)-bc=0$$
Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :
$$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$
$$Leftrightarrow$$
$$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$
Can you now find $a,b,c$ and $d$ ?
$endgroup$
Let :
$$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$
Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be
$$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$
such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :
$$(a-lambda)(d-lambda)-bc=0$$
Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :
$$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$
$$Leftrightarrow$$
$$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$
Can you now find $a,b,c$ and $d$ ?
answered Dec 7 '18 at 22:07
RebellosRebellos
14.6k31247
14.6k31247
$begingroup$
Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
$endgroup$
– M. A. SARKAR
Dec 7 '18 at 22:10
add a comment |
$begingroup$
Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
$endgroup$
– M. A. SARKAR
Dec 7 '18 at 22:10
$begingroup$
Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
$endgroup$
– M. A. SARKAR
Dec 7 '18 at 22:10
$begingroup$
Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
$endgroup$
– M. A. SARKAR
Dec 7 '18 at 22:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030404%2ffind-2-times-2-symmetric-matrix-a-given-two-eigenvalues-and-one-eigenvector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Different eigenspaces of a symmetric matrix are orthogonal to each other.
$endgroup$
– Berci
Dec 7 '18 at 21:54
1
$begingroup$
...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
$endgroup$
– Jean Marie
Dec 7 '18 at 22:04