Find $2times 2$ symmetric matrix $A$ given two eigenvalues and one eigenvector












1












$begingroup$


I am having trouble finding the symmetric matrix $A$ given eigenvalues $1$ and $4$ and eigenvector $(1, 1)$ corresponding to eigenvalue $1$.



I feel like I'd have to use the equation $A=PD(P^{-1})$, but I'm having trouble finding the matrix $P$ if I can't find the second eigenvector.
Any help is appreciated, thanks!










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Different eigenspaces of a symmetric matrix are orthogonal to each other.
    $endgroup$
    – Berci
    Dec 7 '18 at 21:54






  • 1




    $begingroup$
    ...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
    $endgroup$
    – Jean Marie
    Dec 7 '18 at 22:04


















1












$begingroup$


I am having trouble finding the symmetric matrix $A$ given eigenvalues $1$ and $4$ and eigenvector $(1, 1)$ corresponding to eigenvalue $1$.



I feel like I'd have to use the equation $A=PD(P^{-1})$, but I'm having trouble finding the matrix $P$ if I can't find the second eigenvector.
Any help is appreciated, thanks!










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Different eigenspaces of a symmetric matrix are orthogonal to each other.
    $endgroup$
    – Berci
    Dec 7 '18 at 21:54






  • 1




    $begingroup$
    ...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
    $endgroup$
    – Jean Marie
    Dec 7 '18 at 22:04
















1












1








1





$begingroup$


I am having trouble finding the symmetric matrix $A$ given eigenvalues $1$ and $4$ and eigenvector $(1, 1)$ corresponding to eigenvalue $1$.



I feel like I'd have to use the equation $A=PD(P^{-1})$, but I'm having trouble finding the matrix $P$ if I can't find the second eigenvector.
Any help is appreciated, thanks!










share|cite|improve this question











$endgroup$




I am having trouble finding the symmetric matrix $A$ given eigenvalues $1$ and $4$ and eigenvector $(1, 1)$ corresponding to eigenvalue $1$.



I feel like I'd have to use the equation $A=PD(P^{-1})$, but I'm having trouble finding the matrix $P$ if I can't find the second eigenvector.
Any help is appreciated, thanks!







linear-algebra eigenvalues-eigenvectors






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 7 '18 at 22:06









user376343

3,7383827




3,7383827










asked Dec 7 '18 at 21:52









a hea he

61




61








  • 3




    $begingroup$
    Different eigenspaces of a symmetric matrix are orthogonal to each other.
    $endgroup$
    – Berci
    Dec 7 '18 at 21:54






  • 1




    $begingroup$
    ...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
    $endgroup$
    – Jean Marie
    Dec 7 '18 at 22:04
















  • 3




    $begingroup$
    Different eigenspaces of a symmetric matrix are orthogonal to each other.
    $endgroup$
    – Berci
    Dec 7 '18 at 21:54






  • 1




    $begingroup$
    ...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
    $endgroup$
    – Jean Marie
    Dec 7 '18 at 22:04










3




3




$begingroup$
Different eigenspaces of a symmetric matrix are orthogonal to each other.
$endgroup$
– Berci
Dec 7 '18 at 21:54




$begingroup$
Different eigenspaces of a symmetric matrix are orthogonal to each other.
$endgroup$
– Berci
Dec 7 '18 at 21:54




1




1




$begingroup$
...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
$endgroup$
– Jean Marie
Dec 7 '18 at 22:04






$begingroup$
...thus $[1,-1]^T$ could be this vector (attached to eigenvalue 4)...
$endgroup$
– Jean Marie
Dec 7 '18 at 22:04












2 Answers
2






active

oldest

votes


















2












$begingroup$

To offer a slightly different perspective, due to the Spectral Theorem you have
$$
A=P_1+4P_2,$$

where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
$$
P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
$$

And then
$$
A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let :



    $$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$



    Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be



    $$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$



    such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :



    $$(a-lambda)(d-lambda)-bc=0$$



    Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :



    $$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$



    $$Leftrightarrow$$



    $$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$



    Can you now find $a,b,c$ and $d$ ?






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
      $endgroup$
      – M. A. SARKAR
      Dec 7 '18 at 22:10













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030404%2ffind-2-times-2-symmetric-matrix-a-given-two-eigenvalues-and-one-eigenvector%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    To offer a slightly different perspective, due to the Spectral Theorem you have
    $$
    A=P_1+4P_2,$$

    where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
    $$
    P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
    $$

    And then
    $$
    A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
    $$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      To offer a slightly different perspective, due to the Spectral Theorem you have
      $$
      A=P_1+4P_2,$$

      where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
      $$
      P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
      $$

      And then
      $$
      A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
      $$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        To offer a slightly different perspective, due to the Spectral Theorem you have
        $$
        A=P_1+4P_2,$$

        where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
        $$
        P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
        $$

        And then
        $$
        A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
        $$






        share|cite|improve this answer









        $endgroup$



        To offer a slightly different perspective, due to the Spectral Theorem you have
        $$
        A=P_1+4P_2,$$

        where $P_1$ is the orthogonal projection onto the span of $(1,1)^t$, and $P_2$ is orthogonal to $P_1$; that is, $P_2=I-P_1$. Thus
        $$
        P_1=tfrac12,begin{bmatrix} 1&1end{bmatrix}begin{bmatrix} 1\1end{bmatrix}=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}.
        $$

        And then
        $$
        A=begin{bmatrix}1/2&1/2\1/2&1/2end{bmatrix}+4begin{bmatrix}1/2&-1/2\-1/2&1/2end{bmatrix}=begin{bmatrix}5/2&-3/2\-3/2&5/2 end{bmatrix}
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 7 '18 at 22:12









        Martin ArgeramiMartin Argerami

        127k1182181




        127k1182181























            1












            $begingroup$

            Let :



            $$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$



            Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be



            $$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$



            such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :



            $$(a-lambda)(d-lambda)-bc=0$$



            Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :



            $$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$



            $$Leftrightarrow$$



            $$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$



            Can you now find $a,b,c$ and $d$ ?






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
              $endgroup$
              – M. A. SARKAR
              Dec 7 '18 at 22:10


















            1












            $begingroup$

            Let :



            $$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$



            Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be



            $$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$



            such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :



            $$(a-lambda)(d-lambda)-bc=0$$



            Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :



            $$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$



            $$Leftrightarrow$$



            $$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$



            Can you now find $a,b,c$ and $d$ ?






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
              $endgroup$
              – M. A. SARKAR
              Dec 7 '18 at 22:10
















            1












            1








            1





            $begingroup$

            Let :



            $$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$



            Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be



            $$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$



            such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :



            $$(a-lambda)(d-lambda)-bc=0$$



            Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :



            $$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$



            $$Leftrightarrow$$



            $$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$



            Can you now find $a,b,c$ and $d$ ?






            share|cite|improve this answer









            $endgroup$



            Let :



            $$A = begin{pmatrix} a & b \ c & d end{pmatrix}$$



            Since the eigenvalues are $lambda =1 $ and $lambda = 4$, it must be



            $$det(A-lambda I) = begin{vmatrix} a - lambda & b \ c & d - lambdaend{vmatrix} = (a-lambda)(d-lambda)-bc $$



            such that $lambda = 1$ and $lambda = 4$ are solutions to the equation :



            $$(a-lambda)(d-lambda)-bc=0$$



            Since $(1,1)^mathbf{T}$ is an eigenvector of $A$ for $lambda = 1$, it is :



            $$(A- I)(1,1)^mathbf{T} = 0 Rightarrow begin{pmatrix} a - 1 & b \ c & d - 1end{pmatrix}begin{pmatrix}1 \ 1 end{pmatrix} =begin{pmatrix}0 \ 0 end{pmatrix} $$



            $$Leftrightarrow$$



            $$begin{cases} a-1 + b = 0 \c + d-1 = 0end{cases}$$



            Can you now find $a,b,c$ and $d$ ?







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 7 '18 at 22:07









            RebellosRebellos

            14.6k31247




            14.6k31247












            • $begingroup$
              Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
              $endgroup$
              – M. A. SARKAR
              Dec 7 '18 at 22:10




















            • $begingroup$
              Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
              $endgroup$
              – M. A. SARKAR
              Dec 7 '18 at 22:10


















            $begingroup$
            Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
            $endgroup$
            – M. A. SARKAR
            Dec 7 '18 at 22:10






            $begingroup$
            Also use the other two conditions: $ lambda_1 lambda_2=4=ad-bc$ and $ lambda_1+lambda_2=4+1=trace (A)=a+d$.. i.e., $ a+d=5, ad-bc=4$.
            $endgroup$
            – M. A. SARKAR
            Dec 7 '18 at 22:10




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030404%2ffind-2-times-2-symmetric-matrix-a-given-two-eigenvalues-and-one-eigenvector%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten