Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$
$begingroup$
Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$
$$int_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2$$
Let $u=x_1+x_2$ and $,du=,dx_1$.
$$int_0^infty int_{x_2}^infty frac{e^frac{-u}{2}}{u} ,du ,dx_2 $$
How do I compute the inner integral?
calculus integration improper-integrals
$endgroup$
add a comment |
$begingroup$
Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$
$$int_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2$$
Let $u=x_1+x_2$ and $,du=,dx_1$.
$$int_0^infty int_{x_2}^infty frac{e^frac{-u}{2}}{u} ,du ,dx_2 $$
How do I compute the inner integral?
calculus integration improper-integrals
$endgroup$
add a comment |
$begingroup$
Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$
$$int_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2$$
Let $u=x_1+x_2$ and $,du=,dx_1$.
$$int_0^infty int_{x_2}^infty frac{e^frac{-u}{2}}{u} ,du ,dx_2 $$
How do I compute the inner integral?
calculus integration improper-integrals
$endgroup$
Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$
$$int_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2$$
Let $u=x_1+x_2$ and $,du=,dx_1$.
$$int_0^infty int_{x_2}^infty frac{e^frac{-u}{2}}{u} ,du ,dx_2 $$
How do I compute the inner integral?
calculus integration improper-integrals
calculus integration improper-integrals
edited Nov 21 '14 at 3:34
dustin
6,72892969
6,72892969
asked Nov 21 '14 at 3:00
Username UnknownUsername Unknown
1,25242058
1,25242058
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
begin{align}
4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
&= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
&= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
&=cdots
end{align}
If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.
When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$
Mouse over for solution:
begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}
$endgroup$
$begingroup$
Perfect so $c=frac{1}{16pi^2}$
$endgroup$
– Username Unknown
Nov 21 '14 at 3:37
$begingroup$
@UsernameUnknown You should get $C=1/2$
$endgroup$
– dustin
Nov 21 '14 at 3:37
add a comment |
$begingroup$
Integration by parts:))
$$
int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1031823%2fsolving-for-c-when-we-have-c-int-0-infty-int-0-infty-frace-frac-x-1x-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
begin{align}
4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
&= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
&= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
&=cdots
end{align}
If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.
When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$
Mouse over for solution:
begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}
$endgroup$
$begingroup$
Perfect so $c=frac{1}{16pi^2}$
$endgroup$
– Username Unknown
Nov 21 '14 at 3:37
$begingroup$
@UsernameUnknown You should get $C=1/2$
$endgroup$
– dustin
Nov 21 '14 at 3:37
add a comment |
$begingroup$
From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
begin{align}
4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
&= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
&= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
&=cdots
end{align}
If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.
When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$
Mouse over for solution:
begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}
$endgroup$
$begingroup$
Perfect so $c=frac{1}{16pi^2}$
$endgroup$
– Username Unknown
Nov 21 '14 at 3:37
$begingroup$
@UsernameUnknown You should get $C=1/2$
$endgroup$
– dustin
Nov 21 '14 at 3:37
add a comment |
$begingroup$
From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
begin{align}
4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
&= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
&= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
&=cdots
end{align}
If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.
When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$
Mouse over for solution:
begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}
$endgroup$
From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
begin{align}
4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
&= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
&= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
&=cdots
end{align}
If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.
When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$
Mouse over for solution:
begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}
edited Nov 21 '14 at 16:25
answered Nov 21 '14 at 3:17
dustindustin
6,72892969
6,72892969
$begingroup$
Perfect so $c=frac{1}{16pi^2}$
$endgroup$
– Username Unknown
Nov 21 '14 at 3:37
$begingroup$
@UsernameUnknown You should get $C=1/2$
$endgroup$
– dustin
Nov 21 '14 at 3:37
add a comment |
$begingroup$
Perfect so $c=frac{1}{16pi^2}$
$endgroup$
– Username Unknown
Nov 21 '14 at 3:37
$begingroup$
@UsernameUnknown You should get $C=1/2$
$endgroup$
– dustin
Nov 21 '14 at 3:37
$begingroup$
Perfect so $c=frac{1}{16pi^2}$
$endgroup$
– Username Unknown
Nov 21 '14 at 3:37
$begingroup$
Perfect so $c=frac{1}{16pi^2}$
$endgroup$
– Username Unknown
Nov 21 '14 at 3:37
$begingroup$
@UsernameUnknown You should get $C=1/2$
$endgroup$
– dustin
Nov 21 '14 at 3:37
$begingroup$
@UsernameUnknown You should get $C=1/2$
$endgroup$
– dustin
Nov 21 '14 at 3:37
add a comment |
$begingroup$
Integration by parts:))
$$
int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
$$
$endgroup$
add a comment |
$begingroup$
Integration by parts:))
$$
int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
$$
$endgroup$
add a comment |
$begingroup$
Integration by parts:))
$$
int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
$$
$endgroup$
Integration by parts:))
$$
int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
$$
edited Dec 8 '18 at 7:16
Brahadeesh
6,32942363
6,32942363
answered Dec 7 '18 at 23:20
AAKAAK
365
365
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1031823%2fsolving-for-c-when-we-have-c-int-0-infty-int-0-infty-frace-frac-x-1x-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown