Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$












1












$begingroup$


Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$



$$int_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2$$



Let $u=x_1+x_2$ and $,du=,dx_1$.



$$int_0^infty int_{x_2}^infty frac{e^frac{-u}{2}}{u} ,du ,dx_2 $$



How do I compute the inner integral?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$



    $$int_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2$$



    Let $u=x_1+x_2$ and $,du=,dx_1$.



    $$int_0^infty int_{x_2}^infty frac{e^frac{-u}{2}}{u} ,du ,dx_2 $$



    How do I compute the inner integral?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$



      $$int_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2$$



      Let $u=x_1+x_2$ and $,du=,dx_1$.



      $$int_0^infty int_{x_2}^infty frac{e^frac{-u}{2}}{u} ,du ,dx_2 $$



      How do I compute the inner integral?










      share|cite|improve this question











      $endgroup$




      Solving for C when we have $Cint_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2=1$



      $$int_0^infty int_0^infty frac{e^frac{-(x_1+x_2)}{2}}{x_1+x_2} ,dx_1 ,dx_2$$



      Let $u=x_1+x_2$ and $,du=,dx_1$.



      $$int_0^infty int_{x_2}^infty frac{e^frac{-u}{2}}{u} ,du ,dx_2 $$



      How do I compute the inner integral?







      calculus integration improper-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 21 '14 at 3:34









      dustin

      6,72892969




      6,72892969










      asked Nov 21 '14 at 3:00









      Username UnknownUsername Unknown

      1,25242058




      1,25242058






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
          begin{align}
          4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
          &= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
          &= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
          &=cdots
          end{align}





          If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.



          When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$



          Mouse over for solution:




          begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Perfect so $c=frac{1}{16pi^2}$
            $endgroup$
            – Username Unknown
            Nov 21 '14 at 3:37










          • $begingroup$
            @UsernameUnknown You should get $C=1/2$
            $endgroup$
            – dustin
            Nov 21 '14 at 3:37





















          -1












          $begingroup$

          Integration by parts:))
          $$
          int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
          $$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1031823%2fsolving-for-c-when-we-have-c-int-0-infty-int-0-infty-frace-frac-x-1x-2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
            begin{align}
            4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
            &= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
            &= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
            &=cdots
            end{align}





            If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.



            When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$



            Mouse over for solution:




            begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}







            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Perfect so $c=frac{1}{16pi^2}$
              $endgroup$
              – Username Unknown
              Nov 21 '14 at 3:37










            • $begingroup$
              @UsernameUnknown You should get $C=1/2$
              $endgroup$
              – dustin
              Nov 21 '14 at 3:37


















            2












            $begingroup$

            From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
            begin{align}
            4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
            &= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
            &= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
            &=cdots
            end{align}





            If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.



            When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$



            Mouse over for solution:




            begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}







            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Perfect so $c=frac{1}{16pi^2}$
              $endgroup$
              – Username Unknown
              Nov 21 '14 at 3:37










            • $begingroup$
              @UsernameUnknown You should get $C=1/2$
              $endgroup$
              – dustin
              Nov 21 '14 at 3:37
















            2












            2








            2





            $begingroup$

            From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
            begin{align}
            4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
            &= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
            &= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
            &=cdots
            end{align}





            If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.



            When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$



            Mouse over for solution:




            begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}







            share|cite|improve this answer











            $endgroup$



            From my initial assessment, the substitution $x_1 = x^2$ and $x_2 = y^2$ should work. After that let $x^2 + y^2 = r^2$ where the Jacobian is then $rdrdtheta$. Then you can make a u sub where $u = r^2/2$. At this point, you can integrate your u integral and you left with a $theta$ integral of $sin(theta)cos(theta)$
            begin{align}
            4iintfrac{exp(-r^2/2)}{r^2}r^3sin(theta)cos(theta)drdtheta
            &= 4iintexp(-u)sin(theta)cos(theta)dudtheta\
            &= -4intexp(-u)Bigl|_0^{infty}sin(theta)cos(theta)dtheta\
            &=cdots
            end{align}





            If you obtained $frac{1}{16pi^2}$, I would suggest you try again. If you still cant figure it out, show what you have done.



            When we convert to $r$ and $theta$, the bounds become $0<r<infty$ and $0<theta<pi/2$



            Mouse over for solution:




            begin{align}&= 4int_0^{pi/2}sin(theta)cos(theta)dtheta\&=2int_0^{pi/2}sin(2theta)dtheta\&= -cos(2theta)Bigr|_0^{pi/2}\&=1 + 1\&=2end{align}








            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 21 '14 at 16:25

























            answered Nov 21 '14 at 3:17









            dustindustin

            6,72892969




            6,72892969












            • $begingroup$
              Perfect so $c=frac{1}{16pi^2}$
              $endgroup$
              – Username Unknown
              Nov 21 '14 at 3:37










            • $begingroup$
              @UsernameUnknown You should get $C=1/2$
              $endgroup$
              – dustin
              Nov 21 '14 at 3:37




















            • $begingroup$
              Perfect so $c=frac{1}{16pi^2}$
              $endgroup$
              – Username Unknown
              Nov 21 '14 at 3:37










            • $begingroup$
              @UsernameUnknown You should get $C=1/2$
              $endgroup$
              – dustin
              Nov 21 '14 at 3:37


















            $begingroup$
            Perfect so $c=frac{1}{16pi^2}$
            $endgroup$
            – Username Unknown
            Nov 21 '14 at 3:37




            $begingroup$
            Perfect so $c=frac{1}{16pi^2}$
            $endgroup$
            – Username Unknown
            Nov 21 '14 at 3:37












            $begingroup$
            @UsernameUnknown You should get $C=1/2$
            $endgroup$
            – dustin
            Nov 21 '14 at 3:37






            $begingroup$
            @UsernameUnknown You should get $C=1/2$
            $endgroup$
            – dustin
            Nov 21 '14 at 3:37













            -1












            $begingroup$

            Integration by parts:))
            $$
            int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
            $$






            share|cite|improve this answer











            $endgroup$


















              -1












              $begingroup$

              Integration by parts:))
              $$
              int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
              $$






              share|cite|improve this answer











              $endgroup$
















                -1












                -1








                -1





                $begingroup$

                Integration by parts:))
                $$
                int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
                $$






                share|cite|improve this answer











                $endgroup$



                Integration by parts:))
                $$
                int_0^{infty}int_{x_2}^{infty}frac{e^{-frac u2}}udu, dx_2=int_0^{infty}x_2frac{e^{-frac {x_2}2}}{x_2}dx_2=2.
                $$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 8 '18 at 7:16









                Brahadeesh

                6,32942363




                6,32942363










                answered Dec 7 '18 at 23:20









                AAKAAK

                365




                365






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1031823%2fsolving-for-c-when-we-have-c-int-0-infty-int-0-infty-frace-frac-x-1x-2%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten