How is the Integral of $int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$












16












$begingroup$


Can Some one tell me what this method is called and how it works With a detailed proof



$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



I've been using this a lot in definite integration but haven't seemed to have realized why it is true. But whatever it is it always seems to work.



Basically a proof of how it is always true.










share|cite|improve this question











$endgroup$

















    16












    $begingroup$


    Can Some one tell me what this method is called and how it works With a detailed proof



    $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



    I've been using this a lot in definite integration but haven't seemed to have realized why it is true. But whatever it is it always seems to work.



    Basically a proof of how it is always true.










    share|cite|improve this question











    $endgroup$















      16












      16








      16


      9



      $begingroup$


      Can Some one tell me what this method is called and how it works With a detailed proof



      $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



      I've been using this a lot in definite integration but haven't seemed to have realized why it is true. But whatever it is it always seems to work.



      Basically a proof of how it is always true.










      share|cite|improve this question











      $endgroup$




      Can Some one tell me what this method is called and how it works With a detailed proof



      $$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$



      I've been using this a lot in definite integration but haven't seemed to have realized why it is true. But whatever it is it always seems to work.



      Basically a proof of how it is always true.







      integration functions definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Oct 12 '14 at 11:18









      Ali Caglayan

      3,74873162




      3,74873162










      asked Jul 4 '12 at 12:40









      The-Ever-KidThe-Ever-Kid

      280213




      280213






















          7 Answers
          7






          active

          oldest

          votes


















          24












          $begingroup$

          Here is a pictorial argument.



          $displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
          enter image description here
          $displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
          enter image description here
          Hence, both are equal.






          share|cite|improve this answer









          $endgroup$









          • 4




            $begingroup$
            Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
            $endgroup$
            – N. S.
            Jul 4 '12 at 16:06



















          23












          $begingroup$

          Change of variables: $a+b-x=t$, $dx = -dt$, and
          $$
          int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
            $endgroup$
            – mavavilj
            Apr 19 '16 at 10:28








          • 2




            $begingroup$
            @mavavilj Dummy variables...
            $endgroup$
            – Siminore
            Apr 19 '16 at 12:00



















          8












          $begingroup$

          it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
          begin{align*}
          int_a^b f(x),dx &= int_a^b f(u), du\
          &= int_b^a f(a+b-x)bigl(-dxbigr)\
          &= -int_b^a f(a+b-x),dx\
          &= int_a^b f(a+b-x), dx
          end{align*}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            But how is $int_a^b f(x)dx = int_a^b f(u)du$?
            $endgroup$
            – mavavilj
            Apr 19 '16 at 10:48



















          3












          $begingroup$

          Let the antiderivative of $f$ be $F$.



          Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .



          EDIT Thank you for the correction avatar






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How is $dx=-d(a+b-x)$?
            $endgroup$
            – mavavilj
            Apr 19 '16 at 10:48





















          3












          $begingroup$

          Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:



          $$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$



          Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Lets us define two functions
            $G1(x) = F(x)$ and
            $G2(x) = F(a+b-x)$



            For any point $x$ in the range $x=a$ to $x=b$
            we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.



            Now we can define any point $x$ in two ways:
            $x1 = a + P(b-a)$ and
            $x2 = b - (1-P)(b-a)$



            Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$



            $G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$



            $G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$



            therefore
            $int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
            because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.



            Therefore
            $int_a^bF(x)$ =
            $int_a^b F(a+b-x)$






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
              $$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
              in which $g(x)$ is $a+b-x$.
              You get:
              $$
              int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
              $$

              So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
              $$
              int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
              $$






              share|cite|improve this answer











              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f166553%2fhow-is-the-integral-of-int-abfxdx-int-abfab-xdx%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                7 Answers
                7






                active

                oldest

                votes








                7 Answers
                7






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                24












                $begingroup$

                Here is a pictorial argument.



                $displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
                enter image description here
                $displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
                enter image description here
                Hence, both are equal.






                share|cite|improve this answer









                $endgroup$









                • 4




                  $begingroup$
                  Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
                  $endgroup$
                  – N. S.
                  Jul 4 '12 at 16:06
















                24












                $begingroup$

                Here is a pictorial argument.



                $displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
                enter image description here
                $displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
                enter image description here
                Hence, both are equal.






                share|cite|improve this answer









                $endgroup$









                • 4




                  $begingroup$
                  Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
                  $endgroup$
                  – N. S.
                  Jul 4 '12 at 16:06














                24












                24








                24





                $begingroup$

                Here is a pictorial argument.



                $displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
                enter image description here
                $displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
                enter image description here
                Hence, both are equal.






                share|cite|improve this answer









                $endgroup$



                Here is a pictorial argument.



                $displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
                enter image description here
                $displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
                enter image description here
                Hence, both are equal.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jul 4 '12 at 13:24







                user17762















                • 4




                  $begingroup$
                  Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
                  $endgroup$
                  – N. S.
                  Jul 4 '12 at 16:06














                • 4




                  $begingroup$
                  Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
                  $endgroup$
                  – N. S.
                  Jul 4 '12 at 16:06








                4




                4




                $begingroup$
                Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
                $endgroup$
                – N. S.
                Jul 4 '12 at 16:06




                $begingroup$
                Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
                $endgroup$
                – N. S.
                Jul 4 '12 at 16:06











                23












                $begingroup$

                Change of variables: $a+b-x=t$, $dx = -dt$, and
                $$
                int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
                $$






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:28








                • 2




                  $begingroup$
                  @mavavilj Dummy variables...
                  $endgroup$
                  – Siminore
                  Apr 19 '16 at 12:00
















                23












                $begingroup$

                Change of variables: $a+b-x=t$, $dx = -dt$, and
                $$
                int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
                $$






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:28








                • 2




                  $begingroup$
                  @mavavilj Dummy variables...
                  $endgroup$
                  – Siminore
                  Apr 19 '16 at 12:00














                23












                23








                23





                $begingroup$

                Change of variables: $a+b-x=t$, $dx = -dt$, and
                $$
                int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
                $$






                share|cite|improve this answer









                $endgroup$



                Change of variables: $a+b-x=t$, $dx = -dt$, and
                $$
                int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jul 4 '12 at 12:47









                SiminoreSiminore

                30.4k33368




                30.4k33368












                • $begingroup$
                  And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:28








                • 2




                  $begingroup$
                  @mavavilj Dummy variables...
                  $endgroup$
                  – Siminore
                  Apr 19 '16 at 12:00


















                • $begingroup$
                  And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:28








                • 2




                  $begingroup$
                  @mavavilj Dummy variables...
                  $endgroup$
                  – Siminore
                  Apr 19 '16 at 12:00
















                $begingroup$
                And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
                $endgroup$
                – mavavilj
                Apr 19 '16 at 10:28






                $begingroup$
                And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
                $endgroup$
                – mavavilj
                Apr 19 '16 at 10:28






                2




                2




                $begingroup$
                @mavavilj Dummy variables...
                $endgroup$
                – Siminore
                Apr 19 '16 at 12:00




                $begingroup$
                @mavavilj Dummy variables...
                $endgroup$
                – Siminore
                Apr 19 '16 at 12:00











                8












                $begingroup$

                it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
                begin{align*}
                int_a^b f(x),dx &= int_a^b f(u), du\
                &= int_b^a f(a+b-x)bigl(-dxbigr)\
                &= -int_b^a f(a+b-x),dx\
                &= int_a^b f(a+b-x), dx
                end{align*}






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  But how is $int_a^b f(x)dx = int_a^b f(u)du$?
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:48
















                8












                $begingroup$

                it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
                begin{align*}
                int_a^b f(x),dx &= int_a^b f(u), du\
                &= int_b^a f(a+b-x)bigl(-dxbigr)\
                &= -int_b^a f(a+b-x),dx\
                &= int_a^b f(a+b-x), dx
                end{align*}






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  But how is $int_a^b f(x)dx = int_a^b f(u)du$?
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:48














                8












                8








                8





                $begingroup$

                it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
                begin{align*}
                int_a^b f(x),dx &= int_a^b f(u), du\
                &= int_b^a f(a+b-x)bigl(-dxbigr)\
                &= -int_b^a f(a+b-x),dx\
                &= int_a^b f(a+b-x), dx
                end{align*}






                share|cite|improve this answer









                $endgroup$



                it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
                begin{align*}
                int_a^b f(x),dx &= int_a^b f(u), du\
                &= int_b^a f(a+b-x)bigl(-dxbigr)\
                &= -int_b^a f(a+b-x),dx\
                &= int_a^b f(a+b-x), dx
                end{align*}







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jul 4 '12 at 12:47









                martinimartini

                70.5k45991




                70.5k45991












                • $begingroup$
                  But how is $int_a^b f(x)dx = int_a^b f(u)du$?
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:48


















                • $begingroup$
                  But how is $int_a^b f(x)dx = int_a^b f(u)du$?
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:48
















                $begingroup$
                But how is $int_a^b f(x)dx = int_a^b f(u)du$?
                $endgroup$
                – mavavilj
                Apr 19 '16 at 10:48




                $begingroup$
                But how is $int_a^b f(x)dx = int_a^b f(u)du$?
                $endgroup$
                – mavavilj
                Apr 19 '16 at 10:48











                3












                $begingroup$

                Let the antiderivative of $f$ be $F$.



                Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .



                EDIT Thank you for the correction avatar






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  How is $dx=-d(a+b-x)$?
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:48


















                3












                $begingroup$

                Let the antiderivative of $f$ be $F$.



                Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .



                EDIT Thank you for the correction avatar






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  How is $dx=-d(a+b-x)$?
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:48
















                3












                3








                3





                $begingroup$

                Let the antiderivative of $f$ be $F$.



                Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .



                EDIT Thank you for the correction avatar






                share|cite|improve this answer











                $endgroup$



                Let the antiderivative of $f$ be $F$.



                Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .



                EDIT Thank you for the correction avatar







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jul 4 '12 at 15:35









                Aang

                12.6k22365




                12.6k22365










                answered Jul 4 '12 at 12:45









                Eugene ShvartsEugene Shvarts

                1,2371014




                1,2371014












                • $begingroup$
                  How is $dx=-d(a+b-x)$?
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:48




















                • $begingroup$
                  How is $dx=-d(a+b-x)$?
                  $endgroup$
                  – mavavilj
                  Apr 19 '16 at 10:48


















                $begingroup$
                How is $dx=-d(a+b-x)$?
                $endgroup$
                – mavavilj
                Apr 19 '16 at 10:48






                $begingroup$
                How is $dx=-d(a+b-x)$?
                $endgroup$
                – mavavilj
                Apr 19 '16 at 10:48













                3












                $begingroup$

                Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:



                $$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$



                Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.






                share|cite|improve this answer











                $endgroup$


















                  3












                  $begingroup$

                  Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:



                  $$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$



                  Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.






                  share|cite|improve this answer











                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:



                    $$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$



                    Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.






                    share|cite|improve this answer











                    $endgroup$



                    Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:



                    $$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$



                    Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jul 4 '12 at 16:30









                    Michael Hardy

                    1




                    1










                    answered Jul 4 '12 at 12:47









                    Alex R.Alex R.

                    24.9k12452




                    24.9k12452























                        1












                        $begingroup$

                        Lets us define two functions
                        $G1(x) = F(x)$ and
                        $G2(x) = F(a+b-x)$



                        For any point $x$ in the range $x=a$ to $x=b$
                        we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.



                        Now we can define any point $x$ in two ways:
                        $x1 = a + P(b-a)$ and
                        $x2 = b - (1-P)(b-a)$



                        Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$



                        $G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$



                        $G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$



                        therefore
                        $int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
                        because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.



                        Therefore
                        $int_a^bF(x)$ =
                        $int_a^b F(a+b-x)$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          Lets us define two functions
                          $G1(x) = F(x)$ and
                          $G2(x) = F(a+b-x)$



                          For any point $x$ in the range $x=a$ to $x=b$
                          we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.



                          Now we can define any point $x$ in two ways:
                          $x1 = a + P(b-a)$ and
                          $x2 = b - (1-P)(b-a)$



                          Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$



                          $G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$



                          $G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$



                          therefore
                          $int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
                          because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.



                          Therefore
                          $int_a^bF(x)$ =
                          $int_a^b F(a+b-x)$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Lets us define two functions
                            $G1(x) = F(x)$ and
                            $G2(x) = F(a+b-x)$



                            For any point $x$ in the range $x=a$ to $x=b$
                            we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.



                            Now we can define any point $x$ in two ways:
                            $x1 = a + P(b-a)$ and
                            $x2 = b - (1-P)(b-a)$



                            Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$



                            $G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$



                            $G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$



                            therefore
                            $int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
                            because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.



                            Therefore
                            $int_a^bF(x)$ =
                            $int_a^b F(a+b-x)$






                            share|cite|improve this answer









                            $endgroup$



                            Lets us define two functions
                            $G1(x) = F(x)$ and
                            $G2(x) = F(a+b-x)$



                            For any point $x$ in the range $x=a$ to $x=b$
                            we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.



                            Now we can define any point $x$ in two ways:
                            $x1 = a + P(b-a)$ and
                            $x2 = b - (1-P)(b-a)$



                            Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$



                            $G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$



                            $G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$



                            therefore
                            $int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
                            because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.



                            Therefore
                            $int_a^bF(x)$ =
                            $int_a^b F(a+b-x)$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Oct 12 '14 at 11:09









                            steveOwsteveOw

                            44639




                            44639























                                0












                                $begingroup$

                                Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
                                $$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
                                in which $g(x)$ is $a+b-x$.
                                You get:
                                $$
                                int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
                                $$

                                So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
                                $$
                                int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
                                $$






                                share|cite|improve this answer











                                $endgroup$


















                                  0












                                  $begingroup$

                                  Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
                                  $$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
                                  in which $g(x)$ is $a+b-x$.
                                  You get:
                                  $$
                                  int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
                                  $$

                                  So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
                                  $$
                                  int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
                                  $$






                                  share|cite|improve this answer











                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
                                    $$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
                                    in which $g(x)$ is $a+b-x$.
                                    You get:
                                    $$
                                    int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
                                    $$

                                    So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
                                    $$
                                    int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
                                    $$






                                    share|cite|improve this answer











                                    $endgroup$



                                    Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
                                    $$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
                                    in which $g(x)$ is $a+b-x$.
                                    You get:
                                    $$
                                    int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
                                    $$

                                    So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
                                    $$
                                    int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
                                    $$







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited Dec 30 '18 at 17:16

























                                    answered Dec 7 '18 at 22:34









                                    Sebi2020Sebi2020

                                    1225




                                    1225






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f166553%2fhow-is-the-integral-of-int-abfxdx-int-abfab-xdx%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Bundesstraße 106

                                        Verónica Boquete

                                        Ida-Boy-Ed-Garten