How is the Integral of $int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$
$begingroup$
Can Some one tell me what this method is called and how it works With a detailed proof
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
I've been using this a lot in definite integration but haven't seemed to have realized why it is true. But whatever it is it always seems to work.
Basically a proof of how it is always true.
integration functions definite-integrals
$endgroup$
add a comment |
$begingroup$
Can Some one tell me what this method is called and how it works With a detailed proof
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
I've been using this a lot in definite integration but haven't seemed to have realized why it is true. But whatever it is it always seems to work.
Basically a proof of how it is always true.
integration functions definite-integrals
$endgroup$
add a comment |
$begingroup$
Can Some one tell me what this method is called and how it works With a detailed proof
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
I've been using this a lot in definite integration but haven't seemed to have realized why it is true. But whatever it is it always seems to work.
Basically a proof of how it is always true.
integration functions definite-integrals
$endgroup$
Can Some one tell me what this method is called and how it works With a detailed proof
$$int_a^bf(x)~dx=int_a^bf(a+b-x)~dx$$
I've been using this a lot in definite integration but haven't seemed to have realized why it is true. But whatever it is it always seems to work.
Basically a proof of how it is always true.
integration functions definite-integrals
integration functions definite-integrals
edited Oct 12 '14 at 11:18
Ali Caglayan
3,74873162
3,74873162
asked Jul 4 '12 at 12:40
The-Ever-KidThe-Ever-Kid
280213
280213
add a comment |
add a comment |
7 Answers
7
active
oldest
votes
$begingroup$
Here is a pictorial argument.
$displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
$displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
Hence, both are equal.
$endgroup$
4
$begingroup$
Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
$endgroup$
– N. S.
Jul 4 '12 at 16:06
add a comment |
$begingroup$
Change of variables: $a+b-x=t$, $dx = -dt$, and
$$
int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
$$
$endgroup$
$begingroup$
And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
$endgroup$
– mavavilj
Apr 19 '16 at 10:28
2
$begingroup$
@mavavilj Dummy variables...
$endgroup$
– Siminore
Apr 19 '16 at 12:00
add a comment |
$begingroup$
it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
begin{align*}
int_a^b f(x),dx &= int_a^b f(u), du\
&= int_b^a f(a+b-x)bigl(-dxbigr)\
&= -int_b^a f(a+b-x),dx\
&= int_a^b f(a+b-x), dx
end{align*}
$endgroup$
$begingroup$
But how is $int_a^b f(x)dx = int_a^b f(u)du$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
Let the antiderivative of $f$ be $F$.
Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .
EDIT Thank you for the correction avatar
$endgroup$
$begingroup$
How is $dx=-d(a+b-x)$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:
$$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$
Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.
$endgroup$
add a comment |
$begingroup$
Lets us define two functions
$G1(x) = F(x)$ and
$G2(x) = F(a+b-x)$
For any point $x$ in the range $x=a$ to $x=b$
we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.
Now we can define any point $x$ in two ways:
$x1 = a + P(b-a)$ and
$x2 = b - (1-P)(b-a)$
Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$
$G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$
$G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$
therefore
$int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.
Therefore
$int_a^bF(x)$ =
$int_a^b F(a+b-x)$
$endgroup$
add a comment |
$begingroup$
Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
$$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
in which $g(x)$ is $a+b-x$.
You get:
$$
int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
$$
So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
$$
int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f166553%2fhow-is-the-integral-of-int-abfxdx-int-abfab-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is a pictorial argument.
$displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
$displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
Hence, both are equal.
$endgroup$
4
$begingroup$
Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
$endgroup$
– N. S.
Jul 4 '12 at 16:06
add a comment |
$begingroup$
Here is a pictorial argument.
$displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
$displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
Hence, both are equal.
$endgroup$
4
$begingroup$
Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
$endgroup$
– N. S.
Jul 4 '12 at 16:06
add a comment |
$begingroup$
Here is a pictorial argument.
$displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
$displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
Hence, both are equal.
$endgroup$
Here is a pictorial argument.
$displaystyle int_a^b f(x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from left to right.
$displaystyle int_a^b f(a+b-x) dx$ is the area under the curve $y=f(x)$ in the interval $(a,b)$ when you integrate from right to left.
Hence, both are equal.
answered Jul 4 '12 at 13:24
user17762
4
$begingroup$
Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
$endgroup$
– N. S.
Jul 4 '12 at 16:06
add a comment |
4
$begingroup$
Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
$endgroup$
– N. S.
Jul 4 '12 at 16:06
4
4
$begingroup$
Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
$endgroup$
– N. S.
Jul 4 '12 at 16:06
$begingroup$
Or the graph of $g(x)=f(a+b-x)$ is obtained from the graph of $f(x)$ by reflection in the line $x=frac{a+b}{2}$.
$endgroup$
– N. S.
Jul 4 '12 at 16:06
add a comment |
$begingroup$
Change of variables: $a+b-x=t$, $dx = -dt$, and
$$
int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
$$
$endgroup$
$begingroup$
And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
$endgroup$
– mavavilj
Apr 19 '16 at 10:28
2
$begingroup$
@mavavilj Dummy variables...
$endgroup$
– Siminore
Apr 19 '16 at 12:00
add a comment |
$begingroup$
Change of variables: $a+b-x=t$, $dx = -dt$, and
$$
int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
$$
$endgroup$
$begingroup$
And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
$endgroup$
– mavavilj
Apr 19 '16 at 10:28
2
$begingroup$
@mavavilj Dummy variables...
$endgroup$
– Siminore
Apr 19 '16 at 12:00
add a comment |
$begingroup$
Change of variables: $a+b-x=t$, $dx = -dt$, and
$$
int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
$$
$endgroup$
Change of variables: $a+b-x=t$, $dx = -dt$, and
$$
int_a^b f(a+b-x), dx = -int_b^a f(t), dt = int_a^b f(t), dt.
$$
answered Jul 4 '12 at 12:47
SiminoreSiminore
30.4k33368
30.4k33368
$begingroup$
And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
$endgroup$
– mavavilj
Apr 19 '16 at 10:28
2
$begingroup$
@mavavilj Dummy variables...
$endgroup$
– Siminore
Apr 19 '16 at 12:00
add a comment |
$begingroup$
And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
$endgroup$
– mavavilj
Apr 19 '16 at 10:28
2
$begingroup$
@mavavilj Dummy variables...
$endgroup$
– Siminore
Apr 19 '16 at 12:00
$begingroup$
And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
$endgroup$
– mavavilj
Apr 19 '16 at 10:28
$begingroup$
And why is the last one equal to $int_a^b f(x)dx$? If $t=a+b-x$.
$endgroup$
– mavavilj
Apr 19 '16 at 10:28
2
2
$begingroup$
@mavavilj Dummy variables...
$endgroup$
– Siminore
Apr 19 '16 at 12:00
$begingroup$
@mavavilj Dummy variables...
$endgroup$
– Siminore
Apr 19 '16 at 12:00
add a comment |
$begingroup$
it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
begin{align*}
int_a^b f(x),dx &= int_a^b f(u), du\
&= int_b^a f(a+b-x)bigl(-dxbigr)\
&= -int_b^a f(a+b-x),dx\
&= int_a^b f(a+b-x), dx
end{align*}
$endgroup$
$begingroup$
But how is $int_a^b f(x)dx = int_a^b f(u)du$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
begin{align*}
int_a^b f(x),dx &= int_a^b f(u), du\
&= int_b^a f(a+b-x)bigl(-dxbigr)\
&= -int_b^a f(a+b-x),dx\
&= int_a^b f(a+b-x), dx
end{align*}
$endgroup$
$begingroup$
But how is $int_a^b f(x)dx = int_a^b f(u)du$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
begin{align*}
int_a^b f(x),dx &= int_a^b f(u), du\
&= int_b^a f(a+b-x)bigl(-dxbigr)\
&= -int_b^a f(a+b-x),dx\
&= int_a^b f(a+b-x), dx
end{align*}
$endgroup$
it is just substitution, if we let $u = a+b-x$, we have $du = -dx$ and hence (note that $u = b$ when $x= a$ and vice versa)
begin{align*}
int_a^b f(x),dx &= int_a^b f(u), du\
&= int_b^a f(a+b-x)bigl(-dxbigr)\
&= -int_b^a f(a+b-x),dx\
&= int_a^b f(a+b-x), dx
end{align*}
answered Jul 4 '12 at 12:47
martinimartini
70.5k45991
70.5k45991
$begingroup$
But how is $int_a^b f(x)dx = int_a^b f(u)du$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
But how is $int_a^b f(x)dx = int_a^b f(u)du$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
$begingroup$
But how is $int_a^b f(x)dx = int_a^b f(u)du$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
$begingroup$
But how is $int_a^b f(x)dx = int_a^b f(u)du$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
Let the antiderivative of $f$ be $F$.
Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .
EDIT Thank you for the correction avatar
$endgroup$
$begingroup$
How is $dx=-d(a+b-x)$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
Let the antiderivative of $f$ be $F$.
Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .
EDIT Thank you for the correction avatar
$endgroup$
$begingroup$
How is $dx=-d(a+b-x)$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
Let the antiderivative of $f$ be $F$.
Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .
EDIT Thank you for the correction avatar
$endgroup$
Let the antiderivative of $f$ be $F$.
Then $-int_a^b f(a+b-x) d(a+b-x) = -(F(a+b-b) - F(a+b-a)) = F(b) - F(a) = int_a^bf(x)dx$ .
EDIT Thank you for the correction avatar
edited Jul 4 '12 at 15:35
Aang
12.6k22365
12.6k22365
answered Jul 4 '12 at 12:45
Eugene ShvartsEugene Shvarts
1,2371014
1,2371014
$begingroup$
How is $dx=-d(a+b-x)$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
How is $dx=-d(a+b-x)$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
$begingroup$
How is $dx=-d(a+b-x)$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
$begingroup$
How is $dx=-d(a+b-x)$?
$endgroup$
– mavavilj
Apr 19 '16 at 10:48
add a comment |
$begingroup$
Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:
$$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$
Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.
$endgroup$
add a comment |
$begingroup$
Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:
$$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$
Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.
$endgroup$
add a comment |
$begingroup$
Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:
$$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$
Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.
$endgroup$
Define $u=a+b-x$ so that $dx=-du$. Then the boundary term $x=a$ gives $u=b$ and $x=b$ gives $u=a$. Changing variables in the integral gives:
$$int_a^bf(x) , dx = -int_b^af(u) , du = int_a^bf(u) , du=int_a^bf(x) , dx$$
Intuititively, instead of integrating from $a$ to $b$, you are starting at $u=a+b-a=b$ and integrating left to $a$, but then switching sign to account for the fact that you were integrating leftwards.
edited Jul 4 '12 at 16:30
Michael Hardy
1
1
answered Jul 4 '12 at 12:47
Alex R.Alex R.
24.9k12452
24.9k12452
add a comment |
add a comment |
$begingroup$
Lets us define two functions
$G1(x) = F(x)$ and
$G2(x) = F(a+b-x)$
For any point $x$ in the range $x=a$ to $x=b$
we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.
Now we can define any point $x$ in two ways:
$x1 = a + P(b-a)$ and
$x2 = b - (1-P)(b-a)$
Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$
$G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$
$G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$
therefore
$int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.
Therefore
$int_a^bF(x)$ =
$int_a^b F(a+b-x)$
$endgroup$
add a comment |
$begingroup$
Lets us define two functions
$G1(x) = F(x)$ and
$G2(x) = F(a+b-x)$
For any point $x$ in the range $x=a$ to $x=b$
we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.
Now we can define any point $x$ in two ways:
$x1 = a + P(b-a)$ and
$x2 = b - (1-P)(b-a)$
Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$
$G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$
$G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$
therefore
$int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.
Therefore
$int_a^bF(x)$ =
$int_a^b F(a+b-x)$
$endgroup$
add a comment |
$begingroup$
Lets us define two functions
$G1(x) = F(x)$ and
$G2(x) = F(a+b-x)$
For any point $x$ in the range $x=a$ to $x=b$
we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.
Now we can define any point $x$ in two ways:
$x1 = a + P(b-a)$ and
$x2 = b - (1-P)(b-a)$
Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$
$G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$
$G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$
therefore
$int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.
Therefore
$int_a^bF(x)$ =
$int_a^b F(a+b-x)$
$endgroup$
Lets us define two functions
$G1(x) = F(x)$ and
$G2(x) = F(a+b-x)$
For any point $x$ in the range $x=a$ to $x=b$
we can define a variable scalar $P$ such that $x$ divides the interval $a...b$ in the ratio $(P)$:$(1-P)$ where $0 <= P <=1$.
Now we can define any point $x$ in two ways:
$x1 = a + P(b-a)$ and
$x2 = b - (1-P)(b-a)$
Now let us insert $x2$, $x1$ into the two different functions $G1$,$G2$
$G1(x) = F([x2]) = F([b - (1-P)(b-a)]) = F(a + P(b-a))$
$G2(x) = F(a+b-[x1]) = F(a + b - [a + P(b-a)]) = F(b - P(b-a))$
therefore
$int_0^1G1(x),mathrm{d}P =int_0^1G2(x),mathrm{d}P$
because in the former integration we move across the interval from $x=a$ to $x=b$ and in the latter integration we move across the same interval from $x=b$ to $x=a$.
Therefore
$int_a^bF(x)$ =
$int_a^b F(a+b-x)$
answered Oct 12 '14 at 11:09
steveOwsteveOw
44639
44639
add a comment |
add a comment |
$begingroup$
Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
$$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
in which $g(x)$ is $a+b-x$.
You get:
$$
int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
$$
So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
$$
int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
$$
$endgroup$
add a comment |
$begingroup$
Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
$$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
in which $g(x)$ is $a+b-x$.
You get:
$$
int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
$$
So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
$$
int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
$$
$endgroup$
add a comment |
$begingroup$
Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
$$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
in which $g(x)$ is $a+b-x$.
You get:
$$
int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
$$
So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
$$
int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
$$
$endgroup$
Let $F(x)$ be the antiderivative of $f(x)$ with $int f(x) mathop{dx} = F(x)$. Using linear substitution:
$$int f(g(x))mathop{dx} = frac{1}{g'(x)} cdot F(g(x))$$
in which $g(x)$ is $a+b-x$.
You get:
$$
int f(a+b-x) mathop{dx} = frac{1}{frac{d}{dx} (a+b-x)} cdot F(a+b-x) = -F(a+b-x)
$$
So if you now want to calculate $int_a^b f(a+b-x) mathop{dx}$ you get:
$$
int_a^b f(a+b-x) mathop{dx} = -F(a+b-b) +F(a+b-a) = F(b) - F(a) = int_a^b f(x) mathop{dx}
$$
edited Dec 30 '18 at 17:16
answered Dec 7 '18 at 22:34
Sebi2020Sebi2020
1225
1225
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f166553%2fhow-is-the-integral-of-int-abfxdx-int-abfab-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown