Center of mass of an object in $mathbb{R^3}$












1












$begingroup$


A few days ago I asked this question. I have solved what I was asking there. The mass of the given object is $$M=displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi=displaystylefrac{5pi k}{432}$$



Is it correct that, if the center of mass is $(bar{x},bar{y},bar{z})$, $z=frac{r}{3}cos(theta)$ and the Jacobian of the transformation is $frac{r^2sin^2(theta)}{6}$
$$bar{z}=displaystylefrac{1}{M}displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$=frac{1}{k}$$
This don't make sense to me, since the density of mass of the object is directly proportional to the plane $xy$, shouldn't the z-axis of the center of mass be directly proportional to $k$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    You have to take the density, and $k$ with it, into the integral
    $endgroup$
    – Rafa Budría
    Dec 21 '18 at 13:48










  • $begingroup$
    @Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
    $endgroup$
    – John Keeper
    Dec 21 '18 at 14:17












  • $begingroup$
    The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
    $endgroup$
    – Rafa Budría
    Dec 21 '18 at 14:22


















1












$begingroup$


A few days ago I asked this question. I have solved what I was asking there. The mass of the given object is $$M=displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi=displaystylefrac{5pi k}{432}$$



Is it correct that, if the center of mass is $(bar{x},bar{y},bar{z})$, $z=frac{r}{3}cos(theta)$ and the Jacobian of the transformation is $frac{r^2sin^2(theta)}{6}$
$$bar{z}=displaystylefrac{1}{M}displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$=frac{1}{k}$$
This don't make sense to me, since the density of mass of the object is directly proportional to the plane $xy$, shouldn't the z-axis of the center of mass be directly proportional to $k$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    You have to take the density, and $k$ with it, into the integral
    $endgroup$
    – Rafa Budría
    Dec 21 '18 at 13:48










  • $begingroup$
    @Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
    $endgroup$
    – John Keeper
    Dec 21 '18 at 14:17












  • $begingroup$
    The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
    $endgroup$
    – Rafa Budría
    Dec 21 '18 at 14:22
















1












1








1





$begingroup$


A few days ago I asked this question. I have solved what I was asking there. The mass of the given object is $$M=displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi=displaystylefrac{5pi k}{432}$$



Is it correct that, if the center of mass is $(bar{x},bar{y},bar{z})$, $z=frac{r}{3}cos(theta)$ and the Jacobian of the transformation is $frac{r^2sin^2(theta)}{6}$
$$bar{z}=displaystylefrac{1}{M}displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$=frac{1}{k}$$
This don't make sense to me, since the density of mass of the object is directly proportional to the plane $xy$, shouldn't the z-axis of the center of mass be directly proportional to $k$?










share|cite|improve this question









$endgroup$




A few days ago I asked this question. I have solved what I was asking there. The mass of the given object is $$M=displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi=displaystylefrac{5pi k}{432}$$



Is it correct that, if the center of mass is $(bar{x},bar{y},bar{z})$, $z=frac{r}{3}cos(theta)$ and the Jacobian of the transformation is $frac{r^2sin^2(theta)}{6}$
$$bar{z}=displaystylefrac{1}{M}displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$=frac{1}{k}$$
This don't make sense to me, since the density of mass of the object is directly proportional to the plane $xy$, shouldn't the z-axis of the center of mass be directly proportional to $k$?







multivariable-calculus definite-integrals volume






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 21 '18 at 12:55









John KeeperJohn Keeper

541315




541315












  • $begingroup$
    You have to take the density, and $k$ with it, into the integral
    $endgroup$
    – Rafa Budría
    Dec 21 '18 at 13:48










  • $begingroup$
    @Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
    $endgroup$
    – John Keeper
    Dec 21 '18 at 14:17












  • $begingroup$
    The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
    $endgroup$
    – Rafa Budría
    Dec 21 '18 at 14:22




















  • $begingroup$
    You have to take the density, and $k$ with it, into the integral
    $endgroup$
    – Rafa Budría
    Dec 21 '18 at 13:48










  • $begingroup$
    @Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
    $endgroup$
    – John Keeper
    Dec 21 '18 at 14:17












  • $begingroup$
    The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
    $endgroup$
    – Rafa Budría
    Dec 21 '18 at 14:22


















$begingroup$
You have to take the density, and $k$ with it, into the integral
$endgroup$
– Rafa Budría
Dec 21 '18 at 13:48




$begingroup$
You have to take the density, and $k$ with it, into the integral
$endgroup$
– Rafa Budría
Dec 21 '18 at 13:48












$begingroup$
@Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
$endgroup$
– John Keeper
Dec 21 '18 at 14:17






$begingroup$
@Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
$endgroup$
– John Keeper
Dec 21 '18 at 14:17














$begingroup$
The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
$endgroup$
– Rafa Budría
Dec 21 '18 at 14:22






$begingroup$
The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
$endgroup$
– Rafa Budría
Dec 21 '18 at 14:22












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048471%2fcenter-of-mass-of-an-object-in-mathbbr3%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048471%2fcenter-of-mass-of-an-object-in-mathbbr3%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten