Center of mass of an object in $mathbb{R^3}$
$begingroup$
A few days ago I asked this question. I have solved what I was asking there. The mass of the given object is $$M=displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi=displaystylefrac{5pi k}{432}$$
Is it correct that, if the center of mass is $(bar{x},bar{y},bar{z})$, $z=frac{r}{3}cos(theta)$ and the Jacobian of the transformation is $frac{r^2sin^2(theta)}{6}$
$$bar{z}=displaystylefrac{1}{M}displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$=frac{1}{k}$$
This don't make sense to me, since the density of mass of the object is directly proportional to the plane $xy$, shouldn't the z-axis of the center of mass be directly proportional to $k$?
multivariable-calculus definite-integrals volume
$endgroup$
add a comment |
$begingroup$
A few days ago I asked this question. I have solved what I was asking there. The mass of the given object is $$M=displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi=displaystylefrac{5pi k}{432}$$
Is it correct that, if the center of mass is $(bar{x},bar{y},bar{z})$, $z=frac{r}{3}cos(theta)$ and the Jacobian of the transformation is $frac{r^2sin^2(theta)}{6}$
$$bar{z}=displaystylefrac{1}{M}displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$=frac{1}{k}$$
This don't make sense to me, since the density of mass of the object is directly proportional to the plane $xy$, shouldn't the z-axis of the center of mass be directly proportional to $k$?
multivariable-calculus definite-integrals volume
$endgroup$
$begingroup$
You have to take the density, and $k$ with it, into the integral
$endgroup$
– Rafa Budría
Dec 21 '18 at 13:48
$begingroup$
@Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
$endgroup$
– John Keeper
Dec 21 '18 at 14:17
$begingroup$
The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
$endgroup$
– Rafa Budría
Dec 21 '18 at 14:22
add a comment |
$begingroup$
A few days ago I asked this question. I have solved what I was asking there. The mass of the given object is $$M=displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi=displaystylefrac{5pi k}{432}$$
Is it correct that, if the center of mass is $(bar{x},bar{y},bar{z})$, $z=frac{r}{3}cos(theta)$ and the Jacobian of the transformation is $frac{r^2sin^2(theta)}{6}$
$$bar{z}=displaystylefrac{1}{M}displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$=frac{1}{k}$$
This don't make sense to me, since the density of mass of the object is directly proportional to the plane $xy$, shouldn't the z-axis of the center of mass be directly proportional to $k$?
multivariable-calculus definite-integrals volume
$endgroup$
A few days ago I asked this question. I have solved what I was asking there. The mass of the given object is $$M=displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}kdisplaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi=displaystylefrac{5pi k}{432}$$
Is it correct that, if the center of mass is $(bar{x},bar{y},bar{z})$, $z=frac{r}{3}cos(theta)$ and the Jacobian of the transformation is $frac{r^2sin^2(theta)}{6}$
$$bar{z}=displaystylefrac{1}{M}displaystyleint_{0}^{2pi}displaystyleint_{0}^{pi/3}displaystyleint_{0}^{1}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi+displaystyleint_{0}^{2pi}displaystyleint_{pi/3}^{pi/2}displaystyleint_{0}^{2costheta}displaystylefrac{r}{3}cos(theta)displaystylefrac{r^2}{6}sin(theta)drdtheta dphi$$$$=frac{1}{k}$$
This don't make sense to me, since the density of mass of the object is directly proportional to the plane $xy$, shouldn't the z-axis of the center of mass be directly proportional to $k$?
multivariable-calculus definite-integrals volume
multivariable-calculus definite-integrals volume
asked Dec 21 '18 at 12:55
John KeeperJohn Keeper
541315
541315
$begingroup$
You have to take the density, and $k$ with it, into the integral
$endgroup$
– Rafa Budría
Dec 21 '18 at 13:48
$begingroup$
@Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
$endgroup$
– John Keeper
Dec 21 '18 at 14:17
$begingroup$
The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
$endgroup$
– Rafa Budría
Dec 21 '18 at 14:22
add a comment |
$begingroup$
You have to take the density, and $k$ with it, into the integral
$endgroup$
– Rafa Budría
Dec 21 '18 at 13:48
$begingroup$
@Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
$endgroup$
– John Keeper
Dec 21 '18 at 14:17
$begingroup$
The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
$endgroup$
– Rafa Budría
Dec 21 '18 at 14:22
$begingroup$
You have to take the density, and $k$ with it, into the integral
$endgroup$
– Rafa Budría
Dec 21 '18 at 13:48
$begingroup$
You have to take the density, and $k$ with it, into the integral
$endgroup$
– Rafa Budría
Dec 21 '18 at 13:48
$begingroup$
@Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
$endgroup$
– John Keeper
Dec 21 '18 at 14:17
$begingroup$
@Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
$endgroup$
– John Keeper
Dec 21 '18 at 14:17
$begingroup$
The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
$endgroup$
– Rafa Budría
Dec 21 '18 at 14:22
$begingroup$
The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
$endgroup$
– Rafa Budría
Dec 21 '18 at 14:22
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048471%2fcenter-of-mass-of-an-object-in-mathbbr3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048471%2fcenter-of-mass-of-an-object-in-mathbbr3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have to take the density, and $k$ with it, into the integral
$endgroup$
– Rafa Budría
Dec 21 '18 at 13:48
$begingroup$
@Rafa Budría Could you elaborate? Isnt the z-axis of the center of mass defined as $frac{1}{M}int_VzdV$?
$endgroup$
– John Keeper
Dec 21 '18 at 14:17
$begingroup$
The density $kz$ has to be into the integral, multiplying the coordinate $z$. The center of mass is the weighted mean of the masses.
$endgroup$
– Rafa Budría
Dec 21 '18 at 14:22