Is the strong solution of a SDE adapted to the filtration generated by the driving Brownian motion?
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
$xi$ be an $mathcal F_0$-measurable square-integrable random variable on $(Omega,mathcal A,operatorname P)$
$W$ be an $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$
$b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$|b(t,x)|^2+|sigma(t,x)|^2le C_1(1+|x|^2);;;text{for all }tge0text{ and }xinmathbb Rtag1$$ for some $C_1ge0$ and $$|b(t,x)-b(t,y)|^2+|sigma(t,x)-sigma(t,y)|^2le C_2|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag2$$ for some $C_2ge0$
Note that $$mathcal C^T_b:=left{X:Xtext{ is a continuous }mathcal Ftext{-adapted process on }(Omega,mathcal A,operatorname P)text{ with }left|sup_{tin[0,:T]}|X_t|right|_{L^2(operatorname P)}<inftyright}$$ equipped with $$left|Xright|_{mathcal C_b^T}:=left|sup_{tin[0,:T]}|X_t|right|_{L^2(operatorname P)};;;text{for }Xinmathcal C_b^T$$ is a complete semi-normed space for all $T>0$. Now, let $$Xi_T(X):=xi+left(int_0^tb(s,X_s):{rm d}sright)_{tin[0,:T]}+left(int_0^tsigma(s,X_s):{rm d}W_sright)_{tin[0,:T]};;;text{for }Xin C^T_b$$ for $T>0$. We can show that, for all $T>0$, there is a $ninmathbb N$ such that the $n$-fold composition of $Xi_T$ is a contraction on $C_b^T$ and hence there is a unique $X^{(T)}inmathcal C_b^T$ with $$Xi_Tleft(X^{(T)}right)=X^{(T)}tag3.$$ Clearly, $$X_t:=X^{(N)}_t;;;text{for }tin[0,N]text{ and }Ninmathbb N$$ is well-defined.
By definition, $X$ is $mathcal F$-adapted. Assume $xi$ is independent of $W$. Are we able to show that $X$ is even $(sigma(xi)veemathcal F^W_t)_{tge0}$-adapted, where $mathcal F^W$ denotes the filtration generated by $W$?
Fix $T>0$. The idea is to show that $(X_t)_{tin[0,:T]}$ is $(sigma(xi)veemathcal F^W_t)_{tin[0,:T]}$-adapted. Let $Y^0:=xi$ and $$Y^n:=Xi_T(Y^{n-1})=Xi_T^n(xi);;;text{for }ninmathbb N.$$ Now, $W$ is a $(sigma(xi)veemathcal F^W_t)_{tge0}$-Brownian motion and we can show $$left|(X_t)_{tin[0,:T]}-Y^nright|_Txrightarrow{ntoinfty}0tag5.$$ The desired claim follows.
However, what I don't get is the following: Why didn't we work out the construction of $X$ with $mathcal F$ replaced by $(sigma(xi)veemathcal F^W_t)_{tge0}$ in the first place? Since the latter filtration is smaller, we would still be able to conclude $mathcal F$-adaptedness of $X$. There must be something crucial I'm missing here ...
EDIT: As the result seems to be wrong, in general: How can we show it, if $xi$ is non-random?
probability-theory stochastic-processes stochastic-integrals stochastic-analysis sde
$endgroup$
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
$xi$ be an $mathcal F_0$-measurable square-integrable random variable on $(Omega,mathcal A,operatorname P)$
$W$ be an $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$
$b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$|b(t,x)|^2+|sigma(t,x)|^2le C_1(1+|x|^2);;;text{for all }tge0text{ and }xinmathbb Rtag1$$ for some $C_1ge0$ and $$|b(t,x)-b(t,y)|^2+|sigma(t,x)-sigma(t,y)|^2le C_2|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag2$$ for some $C_2ge0$
Note that $$mathcal C^T_b:=left{X:Xtext{ is a continuous }mathcal Ftext{-adapted process on }(Omega,mathcal A,operatorname P)text{ with }left|sup_{tin[0,:T]}|X_t|right|_{L^2(operatorname P)}<inftyright}$$ equipped with $$left|Xright|_{mathcal C_b^T}:=left|sup_{tin[0,:T]}|X_t|right|_{L^2(operatorname P)};;;text{for }Xinmathcal C_b^T$$ is a complete semi-normed space for all $T>0$. Now, let $$Xi_T(X):=xi+left(int_0^tb(s,X_s):{rm d}sright)_{tin[0,:T]}+left(int_0^tsigma(s,X_s):{rm d}W_sright)_{tin[0,:T]};;;text{for }Xin C^T_b$$ for $T>0$. We can show that, for all $T>0$, there is a $ninmathbb N$ such that the $n$-fold composition of $Xi_T$ is a contraction on $C_b^T$ and hence there is a unique $X^{(T)}inmathcal C_b^T$ with $$Xi_Tleft(X^{(T)}right)=X^{(T)}tag3.$$ Clearly, $$X_t:=X^{(N)}_t;;;text{for }tin[0,N]text{ and }Ninmathbb N$$ is well-defined.
By definition, $X$ is $mathcal F$-adapted. Assume $xi$ is independent of $W$. Are we able to show that $X$ is even $(sigma(xi)veemathcal F^W_t)_{tge0}$-adapted, where $mathcal F^W$ denotes the filtration generated by $W$?
Fix $T>0$. The idea is to show that $(X_t)_{tin[0,:T]}$ is $(sigma(xi)veemathcal F^W_t)_{tin[0,:T]}$-adapted. Let $Y^0:=xi$ and $$Y^n:=Xi_T(Y^{n-1})=Xi_T^n(xi);;;text{for }ninmathbb N.$$ Now, $W$ is a $(sigma(xi)veemathcal F^W_t)_{tge0}$-Brownian motion and we can show $$left|(X_t)_{tin[0,:T]}-Y^nright|_Txrightarrow{ntoinfty}0tag5.$$ The desired claim follows.
However, what I don't get is the following: Why didn't we work out the construction of $X$ with $mathcal F$ replaced by $(sigma(xi)veemathcal F^W_t)_{tge0}$ in the first place? Since the latter filtration is smaller, we would still be able to conclude $mathcal F$-adaptedness of $X$. There must be something crucial I'm missing here ...
EDIT: As the result seems to be wrong, in general: How can we show it, if $xi$ is non-random?
probability-theory stochastic-processes stochastic-integrals stochastic-analysis sde
$endgroup$
add a comment |
$begingroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
$xi$ be an $mathcal F_0$-measurable square-integrable random variable on $(Omega,mathcal A,operatorname P)$
$W$ be an $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$
$b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$|b(t,x)|^2+|sigma(t,x)|^2le C_1(1+|x|^2);;;text{for all }tge0text{ and }xinmathbb Rtag1$$ for some $C_1ge0$ and $$|b(t,x)-b(t,y)|^2+|sigma(t,x)-sigma(t,y)|^2le C_2|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag2$$ for some $C_2ge0$
Note that $$mathcal C^T_b:=left{X:Xtext{ is a continuous }mathcal Ftext{-adapted process on }(Omega,mathcal A,operatorname P)text{ with }left|sup_{tin[0,:T]}|X_t|right|_{L^2(operatorname P)}<inftyright}$$ equipped with $$left|Xright|_{mathcal C_b^T}:=left|sup_{tin[0,:T]}|X_t|right|_{L^2(operatorname P)};;;text{for }Xinmathcal C_b^T$$ is a complete semi-normed space for all $T>0$. Now, let $$Xi_T(X):=xi+left(int_0^tb(s,X_s):{rm d}sright)_{tin[0,:T]}+left(int_0^tsigma(s,X_s):{rm d}W_sright)_{tin[0,:T]};;;text{for }Xin C^T_b$$ for $T>0$. We can show that, for all $T>0$, there is a $ninmathbb N$ such that the $n$-fold composition of $Xi_T$ is a contraction on $C_b^T$ and hence there is a unique $X^{(T)}inmathcal C_b^T$ with $$Xi_Tleft(X^{(T)}right)=X^{(T)}tag3.$$ Clearly, $$X_t:=X^{(N)}_t;;;text{for }tin[0,N]text{ and }Ninmathbb N$$ is well-defined.
By definition, $X$ is $mathcal F$-adapted. Assume $xi$ is independent of $W$. Are we able to show that $X$ is even $(sigma(xi)veemathcal F^W_t)_{tge0}$-adapted, where $mathcal F^W$ denotes the filtration generated by $W$?
Fix $T>0$. The idea is to show that $(X_t)_{tin[0,:T]}$ is $(sigma(xi)veemathcal F^W_t)_{tin[0,:T]}$-adapted. Let $Y^0:=xi$ and $$Y^n:=Xi_T(Y^{n-1})=Xi_T^n(xi);;;text{for }ninmathbb N.$$ Now, $W$ is a $(sigma(xi)veemathcal F^W_t)_{tge0}$-Brownian motion and we can show $$left|(X_t)_{tin[0,:T]}-Y^nright|_Txrightarrow{ntoinfty}0tag5.$$ The desired claim follows.
However, what I don't get is the following: Why didn't we work out the construction of $X$ with $mathcal F$ replaced by $(sigma(xi)veemathcal F^W_t)_{tge0}$ in the first place? Since the latter filtration is smaller, we would still be able to conclude $mathcal F$-adaptedness of $X$. There must be something crucial I'm missing here ...
EDIT: As the result seems to be wrong, in general: How can we show it, if $xi$ is non-random?
probability-theory stochastic-processes stochastic-integrals stochastic-analysis sde
$endgroup$
Let
$(Omega,mathcal A,operatorname P)$ be a complete probability space
$(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$
$xi$ be an $mathcal F_0$-measurable square-integrable random variable on $(Omega,mathcal A,operatorname P)$
$W$ be an $mathcal F$-Brownian motion on $(Omega,mathcal A,operatorname P)$
$b,sigma:[0,infty)timesmathbb Rtomathbb R$ be Borel measurable with $$|b(t,x)|^2+|sigma(t,x)|^2le C_1(1+|x|^2);;;text{for all }tge0text{ and }xinmathbb Rtag1$$ for some $C_1ge0$ and $$|b(t,x)-b(t,y)|^2+|sigma(t,x)-sigma(t,y)|^2le C_2|x-y|^2;;;text{for all }tge0text{ and }x,yinmathbb Rtag2$$ for some $C_2ge0$
Note that $$mathcal C^T_b:=left{X:Xtext{ is a continuous }mathcal Ftext{-adapted process on }(Omega,mathcal A,operatorname P)text{ with }left|sup_{tin[0,:T]}|X_t|right|_{L^2(operatorname P)}<inftyright}$$ equipped with $$left|Xright|_{mathcal C_b^T}:=left|sup_{tin[0,:T]}|X_t|right|_{L^2(operatorname P)};;;text{for }Xinmathcal C_b^T$$ is a complete semi-normed space for all $T>0$. Now, let $$Xi_T(X):=xi+left(int_0^tb(s,X_s):{rm d}sright)_{tin[0,:T]}+left(int_0^tsigma(s,X_s):{rm d}W_sright)_{tin[0,:T]};;;text{for }Xin C^T_b$$ for $T>0$. We can show that, for all $T>0$, there is a $ninmathbb N$ such that the $n$-fold composition of $Xi_T$ is a contraction on $C_b^T$ and hence there is a unique $X^{(T)}inmathcal C_b^T$ with $$Xi_Tleft(X^{(T)}right)=X^{(T)}tag3.$$ Clearly, $$X_t:=X^{(N)}_t;;;text{for }tin[0,N]text{ and }Ninmathbb N$$ is well-defined.
By definition, $X$ is $mathcal F$-adapted. Assume $xi$ is independent of $W$. Are we able to show that $X$ is even $(sigma(xi)veemathcal F^W_t)_{tge0}$-adapted, where $mathcal F^W$ denotes the filtration generated by $W$?
Fix $T>0$. The idea is to show that $(X_t)_{tin[0,:T]}$ is $(sigma(xi)veemathcal F^W_t)_{tin[0,:T]}$-adapted. Let $Y^0:=xi$ and $$Y^n:=Xi_T(Y^{n-1})=Xi_T^n(xi);;;text{for }ninmathbb N.$$ Now, $W$ is a $(sigma(xi)veemathcal F^W_t)_{tge0}$-Brownian motion and we can show $$left|(X_t)_{tin[0,:T]}-Y^nright|_Txrightarrow{ntoinfty}0tag5.$$ The desired claim follows.
However, what I don't get is the following: Why didn't we work out the construction of $X$ with $mathcal F$ replaced by $(sigma(xi)veemathcal F^W_t)_{tge0}$ in the first place? Since the latter filtration is smaller, we would still be able to conclude $mathcal F$-adaptedness of $X$. There must be something crucial I'm missing here ...
EDIT: As the result seems to be wrong, in general: How can we show it, if $xi$ is non-random?
probability-theory stochastic-processes stochastic-integrals stochastic-analysis sde
probability-theory stochastic-processes stochastic-integrals stochastic-analysis sde
edited Feb 22 at 16:51
0xbadf00d
asked Dec 21 '18 at 12:21
0xbadf00d0xbadf00d
1,79241533
1,79241533
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048457%2fis-the-strong-solution-of-a-sde-adapted-to-the-filtration-generated-by-the-drivi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048457%2fis-the-strong-solution-of-a-sde-adapted-to-the-filtration-generated-by-the-drivi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown