An inequality for exponentials












2












$begingroup$


Let $x_1,ldots,x_nin{bf R}$ satisfying $sum_{i=1}^nx_i=0$ and $sum_{i=1}^nx_i^2le1$.
Is it true that for every $rge 1$ one has that $sum_{i=1}^n(r^{x_i}-1)le r-1$?
If so, does anyone have a proof or a reference?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Let $x_1,ldots,x_nin{bf R}$ satisfying $sum_{i=1}^nx_i=0$ and $sum_{i=1}^nx_i^2le1$.
    Is it true that for every $rge 1$ one has that $sum_{i=1}^n(r^{x_i}-1)le r-1$?
    If so, does anyone have a proof or a reference?










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Let $x_1,ldots,x_nin{bf R}$ satisfying $sum_{i=1}^nx_i=0$ and $sum_{i=1}^nx_i^2le1$.
      Is it true that for every $rge 1$ one has that $sum_{i=1}^n(r^{x_i}-1)le r-1$?
      If so, does anyone have a proof or a reference?










      share|cite|improve this question









      $endgroup$




      Let $x_1,ldots,x_nin{bf R}$ satisfying $sum_{i=1}^nx_i=0$ and $sum_{i=1}^nx_i^2le1$.
      Is it true that for every $rge 1$ one has that $sum_{i=1}^n(r^{x_i}-1)le r-1$?
      If so, does anyone have a proof or a reference?







      real-analysis inequality






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 30 '18 at 0:43









      Rene SchoofRene Schoof

      32115




      32115






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Yes. Note that for $|x| leq 1$,
          $$begin{align}
          r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
          &=1+xlog r+(r-1-log r)x^2 \
          end{align}$$



          Note clearly each $|x_i| leq 1$. Thus
          $$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes! Thank you very much
            $endgroup$
            – Rene Schoof
            Jan 26 at 14:11












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056410%2fan-inequality-for-exponentials%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Yes. Note that for $|x| leq 1$,
          $$begin{align}
          r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
          &=1+xlog r+(r-1-log r)x^2 \
          end{align}$$



          Note clearly each $|x_i| leq 1$. Thus
          $$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes! Thank you very much
            $endgroup$
            – Rene Schoof
            Jan 26 at 14:11
















          0












          $begingroup$

          Yes. Note that for $|x| leq 1$,
          $$begin{align}
          r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
          &=1+xlog r+(r-1-log r)x^2 \
          end{align}$$



          Note clearly each $|x_i| leq 1$. Thus
          $$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes! Thank you very much
            $endgroup$
            – Rene Schoof
            Jan 26 at 14:11














          0












          0








          0





          $begingroup$

          Yes. Note that for $|x| leq 1$,
          $$begin{align}
          r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
          &=1+xlog r+(r-1-log r)x^2 \
          end{align}$$



          Note clearly each $|x_i| leq 1$. Thus
          $$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$






          share|cite|improve this answer









          $endgroup$



          Yes. Note that for $|x| leq 1$,
          $$begin{align}
          r^x&=1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i x^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i |x|^{i-2}}{i!}} \
          & leq 1+xlog r+x^2 sum_{i=2}^{infty}{frac{(log r)^i}{i!}} \
          &=1+xlog r+(r-1-log r)x^2 \
          end{align}$$



          Note clearly each $|x_i| leq 1$. Thus
          $$sum_{i=1}^{n}(r^{x_i}-1) leq log r sum_{i=1}^{n}{x_i}+(r-1-log r)sum_{i=1}^{n}{x_i^2} leq r-1-log r leq r-1$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 at 8:39









          user633720user633720

          1




          1












          • $begingroup$
            Yes! Thank you very much
            $endgroup$
            – Rene Schoof
            Jan 26 at 14:11


















          • $begingroup$
            Yes! Thank you very much
            $endgroup$
            – Rene Schoof
            Jan 26 at 14:11
















          $begingroup$
          Yes! Thank you very much
          $endgroup$
          – Rene Schoof
          Jan 26 at 14:11




          $begingroup$
          Yes! Thank you very much
          $endgroup$
          – Rene Schoof
          Jan 26 at 14:11


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056410%2fan-inequality-for-exponentials%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten