Fourier series of $f(x)=pi-x$
$begingroup$
$$f(x)=pi-x qquad x in [0,2 pi[$$
$$a_0=frac{1}{pi} int_0^{2 pi}f(x) dx=frac{1}{pi} int_0^{2 pi} (pi-x) dx=0$$
$$a_n=frac{1}{pi} int_0^{2 pi} cos(nx) dx=frac{1}{pi} int_0^{2 pi}(pi cos(nx)-x cos(nx)) dx=$$
$$frac{1}{pi} Big( Big[frac{pi}{n} sin(nx) Big]_0^{2 pi}-Big[frac{x}{n} sin(nx)+frac{1}{n^2} cos(nx) Big]_0^{2 pi} Big)=0 $$
$$b_n=frac{1}{pi} Big( Big[ -frac{pi}{n} cos(nx) Big]_0^{2 pi}-Big[-frac{x}{n} cos(nx)+frac{1}{n^2} sin(nx) Big]_0^{2 pi} Big)=frac{2}{n}$$
$$f(x)=2 sum_{n=1}^{+infty} frac{1}{n} sin(nx)$$
Is it correct?
fourier-series
$endgroup$
add a comment |
$begingroup$
$$f(x)=pi-x qquad x in [0,2 pi[$$
$$a_0=frac{1}{pi} int_0^{2 pi}f(x) dx=frac{1}{pi} int_0^{2 pi} (pi-x) dx=0$$
$$a_n=frac{1}{pi} int_0^{2 pi} cos(nx) dx=frac{1}{pi} int_0^{2 pi}(pi cos(nx)-x cos(nx)) dx=$$
$$frac{1}{pi} Big( Big[frac{pi}{n} sin(nx) Big]_0^{2 pi}-Big[frac{x}{n} sin(nx)+frac{1}{n^2} cos(nx) Big]_0^{2 pi} Big)=0 $$
$$b_n=frac{1}{pi} Big( Big[ -frac{pi}{n} cos(nx) Big]_0^{2 pi}-Big[-frac{x}{n} cos(nx)+frac{1}{n^2} sin(nx) Big]_0^{2 pi} Big)=frac{2}{n}$$
$$f(x)=2 sum_{n=1}^{+infty} frac{1}{n} sin(nx)$$
Is it correct?
fourier-series
$endgroup$
2
$begingroup$
That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
$endgroup$
– Hugh
Sep 30 '16 at 15:14
add a comment |
$begingroup$
$$f(x)=pi-x qquad x in [0,2 pi[$$
$$a_0=frac{1}{pi} int_0^{2 pi}f(x) dx=frac{1}{pi} int_0^{2 pi} (pi-x) dx=0$$
$$a_n=frac{1}{pi} int_0^{2 pi} cos(nx) dx=frac{1}{pi} int_0^{2 pi}(pi cos(nx)-x cos(nx)) dx=$$
$$frac{1}{pi} Big( Big[frac{pi}{n} sin(nx) Big]_0^{2 pi}-Big[frac{x}{n} sin(nx)+frac{1}{n^2} cos(nx) Big]_0^{2 pi} Big)=0 $$
$$b_n=frac{1}{pi} Big( Big[ -frac{pi}{n} cos(nx) Big]_0^{2 pi}-Big[-frac{x}{n} cos(nx)+frac{1}{n^2} sin(nx) Big]_0^{2 pi} Big)=frac{2}{n}$$
$$f(x)=2 sum_{n=1}^{+infty} frac{1}{n} sin(nx)$$
Is it correct?
fourier-series
$endgroup$
$$f(x)=pi-x qquad x in [0,2 pi[$$
$$a_0=frac{1}{pi} int_0^{2 pi}f(x) dx=frac{1}{pi} int_0^{2 pi} (pi-x) dx=0$$
$$a_n=frac{1}{pi} int_0^{2 pi} cos(nx) dx=frac{1}{pi} int_0^{2 pi}(pi cos(nx)-x cos(nx)) dx=$$
$$frac{1}{pi} Big( Big[frac{pi}{n} sin(nx) Big]_0^{2 pi}-Big[frac{x}{n} sin(nx)+frac{1}{n^2} cos(nx) Big]_0^{2 pi} Big)=0 $$
$$b_n=frac{1}{pi} Big( Big[ -frac{pi}{n} cos(nx) Big]_0^{2 pi}-Big[-frac{x}{n} cos(nx)+frac{1}{n^2} sin(nx) Big]_0^{2 pi} Big)=frac{2}{n}$$
$$f(x)=2 sum_{n=1}^{+infty} frac{1}{n} sin(nx)$$
Is it correct?
fourier-series
fourier-series
asked Sep 30 '16 at 14:33
ElsaElsa
82111
82111
2
$begingroup$
That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
$endgroup$
– Hugh
Sep 30 '16 at 15:14
add a comment |
2
$begingroup$
That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
$endgroup$
– Hugh
Sep 30 '16 at 15:14
2
2
$begingroup$
That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
$endgroup$
– Hugh
Sep 30 '16 at 15:14
$begingroup$
That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
$endgroup$
– Hugh
Sep 30 '16 at 15:14
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:
The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$
Convergence sequence:
$endgroup$
2
$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1948076%2ffourier-series-of-fx-pi-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:
The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$
Convergence sequence:
$endgroup$
2
$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06
add a comment |
$begingroup$
Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:
The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$
Convergence sequence:
$endgroup$
2
$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06
add a comment |
$begingroup$
Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:
The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$
Convergence sequence:
$endgroup$
Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:
The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$
Convergence sequence:
answered Apr 6 '17 at 15:30
dantopadantopa
6,69442245
6,69442245
2
$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06
add a comment |
2
$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06
2
2
$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06
$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1948076%2ffourier-series-of-fx-pi-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
$endgroup$
– Hugh
Sep 30 '16 at 15:14