Fourier series of $f(x)=pi-x$












1












$begingroup$


$$f(x)=pi-x qquad x in [0,2 pi[$$


$$a_0=frac{1}{pi} int_0^{2 pi}f(x) dx=frac{1}{pi} int_0^{2 pi} (pi-x) dx=0$$






$$a_n=frac{1}{pi} int_0^{2 pi} cos(nx) dx=frac{1}{pi} int_0^{2 pi}(pi cos(nx)-x cos(nx)) dx=$$
$$frac{1}{pi} Big( Big[frac{pi}{n} sin(nx) Big]_0^{2 pi}-Big[frac{x}{n} sin(nx)+frac{1}{n^2} cos(nx) Big]_0^{2 pi} Big)=0 $$





$$b_n=frac{1}{pi} Big( Big[ -frac{pi}{n} cos(nx) Big]_0^{2 pi}-Big[-frac{x}{n} cos(nx)+frac{1}{n^2} sin(nx) Big]_0^{2 pi} Big)=frac{2}{n}$$



$$f(x)=2 sum_{n=1}^{+infty} frac{1}{n} sin(nx)$$



Is it correct?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
    $endgroup$
    – Hugh
    Sep 30 '16 at 15:14


















1












$begingroup$


$$f(x)=pi-x qquad x in [0,2 pi[$$


$$a_0=frac{1}{pi} int_0^{2 pi}f(x) dx=frac{1}{pi} int_0^{2 pi} (pi-x) dx=0$$






$$a_n=frac{1}{pi} int_0^{2 pi} cos(nx) dx=frac{1}{pi} int_0^{2 pi}(pi cos(nx)-x cos(nx)) dx=$$
$$frac{1}{pi} Big( Big[frac{pi}{n} sin(nx) Big]_0^{2 pi}-Big[frac{x}{n} sin(nx)+frac{1}{n^2} cos(nx) Big]_0^{2 pi} Big)=0 $$





$$b_n=frac{1}{pi} Big( Big[ -frac{pi}{n} cos(nx) Big]_0^{2 pi}-Big[-frac{x}{n} cos(nx)+frac{1}{n^2} sin(nx) Big]_0^{2 pi} Big)=frac{2}{n}$$



$$f(x)=2 sum_{n=1}^{+infty} frac{1}{n} sin(nx)$$



Is it correct?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
    $endgroup$
    – Hugh
    Sep 30 '16 at 15:14
















1












1








1





$begingroup$


$$f(x)=pi-x qquad x in [0,2 pi[$$


$$a_0=frac{1}{pi} int_0^{2 pi}f(x) dx=frac{1}{pi} int_0^{2 pi} (pi-x) dx=0$$






$$a_n=frac{1}{pi} int_0^{2 pi} cos(nx) dx=frac{1}{pi} int_0^{2 pi}(pi cos(nx)-x cos(nx)) dx=$$
$$frac{1}{pi} Big( Big[frac{pi}{n} sin(nx) Big]_0^{2 pi}-Big[frac{x}{n} sin(nx)+frac{1}{n^2} cos(nx) Big]_0^{2 pi} Big)=0 $$





$$b_n=frac{1}{pi} Big( Big[ -frac{pi}{n} cos(nx) Big]_0^{2 pi}-Big[-frac{x}{n} cos(nx)+frac{1}{n^2} sin(nx) Big]_0^{2 pi} Big)=frac{2}{n}$$



$$f(x)=2 sum_{n=1}^{+infty} frac{1}{n} sin(nx)$$



Is it correct?










share|cite|improve this question









$endgroup$




$$f(x)=pi-x qquad x in [0,2 pi[$$


$$a_0=frac{1}{pi} int_0^{2 pi}f(x) dx=frac{1}{pi} int_0^{2 pi} (pi-x) dx=0$$






$$a_n=frac{1}{pi} int_0^{2 pi} cos(nx) dx=frac{1}{pi} int_0^{2 pi}(pi cos(nx)-x cos(nx)) dx=$$
$$frac{1}{pi} Big( Big[frac{pi}{n} sin(nx) Big]_0^{2 pi}-Big[frac{x}{n} sin(nx)+frac{1}{n^2} cos(nx) Big]_0^{2 pi} Big)=0 $$





$$b_n=frac{1}{pi} Big( Big[ -frac{pi}{n} cos(nx) Big]_0^{2 pi}-Big[-frac{x}{n} cos(nx)+frac{1}{n^2} sin(nx) Big]_0^{2 pi} Big)=frac{2}{n}$$



$$f(x)=2 sum_{n=1}^{+infty} frac{1}{n} sin(nx)$$



Is it correct?







fourier-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 30 '16 at 14:33









ElsaElsa

82111




82111








  • 2




    $begingroup$
    That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
    $endgroup$
    – Hugh
    Sep 30 '16 at 15:14
















  • 2




    $begingroup$
    That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
    $endgroup$
    – Hugh
    Sep 30 '16 at 15:14










2




2




$begingroup$
That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
$endgroup$
– Hugh
Sep 30 '16 at 15:14






$begingroup$
That is the correct approach. A plot of your answer also shows that the approximation is tending to the desired function wolframalpha.com/input/…
$endgroup$
– Hugh
Sep 30 '16 at 15:14












1 Answer
1






active

oldest

votes


















1












$begingroup$

Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:



amps



The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$



Convergence sequence:



1210100






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Nice illustration of the Gibbs Phenomenon in this answer, too.
    $endgroup$
    – Dan Sheppard
    Dec 29 '18 at 23:06












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1948076%2ffourier-series-of-fx-pi-x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:



amps



The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$



Convergence sequence:



1210100






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Nice illustration of the Gibbs Phenomenon in this answer, too.
    $endgroup$
    – Dan Sheppard
    Dec 29 '18 at 23:06
















1












$begingroup$

Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:



amps



The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$



Convergence sequence:



1210100






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Nice illustration of the Gibbs Phenomenon in this answer, too.
    $endgroup$
    – Dan Sheppard
    Dec 29 '18 at 23:06














1












1








1





$begingroup$

Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:



amps



The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$



Convergence sequence:



1210100






share|cite|improve this answer









$endgroup$



Slight errors:
$$
begin{align}
%
a_{0} &= frac{1}{pi} int_{-pi }^{pi } f(x) , dx = 2pi \[5pt]
%
b_{k} &= frac{1}{pi } int_{-pi }^{pi } f(x) sin (k x) , dx = (-1)^k frac{2}{k pi}
%
end{align}
$$
The decay of the amplitudes is linear:



amps



The series expansion looks like
$$
pi - x = pi - 2 sin (x) + sin (2x) - frac{2}{3} sin (3x) + frac{1}{2} sin left( 4x right) - dots
$$



Convergence sequence:



1210100







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Apr 6 '17 at 15:30









dantopadantopa

6,69442245




6,69442245








  • 2




    $begingroup$
    Nice illustration of the Gibbs Phenomenon in this answer, too.
    $endgroup$
    – Dan Sheppard
    Dec 29 '18 at 23:06














  • 2




    $begingroup$
    Nice illustration of the Gibbs Phenomenon in this answer, too.
    $endgroup$
    – Dan Sheppard
    Dec 29 '18 at 23:06








2




2




$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06




$begingroup$
Nice illustration of the Gibbs Phenomenon in this answer, too.
$endgroup$
– Dan Sheppard
Dec 29 '18 at 23:06


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1948076%2ffourier-series-of-fx-pi-x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten