Poisson and convergence in distribution
up vote
1
down vote
favorite
Let $X_1,X_2,...$ be iid with mean $mu$ and variance $sigma^2$. Let $N_{lambda}$ be poisson($lambda$) independent of the $X_i$'s.
(a) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-N_{lambda}mu}{sqrt{lambda}}.$$
(b) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-lambdamu}{sqrt{lambda}}.$$
(c) For which random variables $X$ will the two limits be the same?
My solution:
Let $Y_{lambda}$ be the quotient given in the problem. Then $mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}(phi_{X'_1}(frac{t}{lambda} ))^nfrac{e^{-lambda} lambda^n}{n!}=sum_{n=0}^{infty}(1-sigma^2frac{t^2}{2lambda^2}+o(frac{t^2}{lambda^2}))^n frac{e^{-lambda}lambda^n}{n!}$
where $X'=X-mu$. Can the above sum be simplified as $lambda$ goes to $infty$?
real-analysis probability-theory characteristic-functions poisson-process
add a comment |
up vote
1
down vote
favorite
Let $X_1,X_2,...$ be iid with mean $mu$ and variance $sigma^2$. Let $N_{lambda}$ be poisson($lambda$) independent of the $X_i$'s.
(a) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-N_{lambda}mu}{sqrt{lambda}}.$$
(b) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-lambdamu}{sqrt{lambda}}.$$
(c) For which random variables $X$ will the two limits be the same?
My solution:
Let $Y_{lambda}$ be the quotient given in the problem. Then $mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}(phi_{X'_1}(frac{t}{lambda} ))^nfrac{e^{-lambda} lambda^n}{n!}=sum_{n=0}^{infty}(1-sigma^2frac{t^2}{2lambda^2}+o(frac{t^2}{lambda^2}))^n frac{e^{-lambda}lambda^n}{n!}$
where $X'=X-mu$. Can the above sum be simplified as $lambda$ goes to $infty$?
real-analysis probability-theory characteristic-functions poisson-process
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $X_1,X_2,...$ be iid with mean $mu$ and variance $sigma^2$. Let $N_{lambda}$ be poisson($lambda$) independent of the $X_i$'s.
(a) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-N_{lambda}mu}{sqrt{lambda}}.$$
(b) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-lambdamu}{sqrt{lambda}}.$$
(c) For which random variables $X$ will the two limits be the same?
My solution:
Let $Y_{lambda}$ be the quotient given in the problem. Then $mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}(phi_{X'_1}(frac{t}{lambda} ))^nfrac{e^{-lambda} lambda^n}{n!}=sum_{n=0}^{infty}(1-sigma^2frac{t^2}{2lambda^2}+o(frac{t^2}{lambda^2}))^n frac{e^{-lambda}lambda^n}{n!}$
where $X'=X-mu$. Can the above sum be simplified as $lambda$ goes to $infty$?
real-analysis probability-theory characteristic-functions poisson-process
Let $X_1,X_2,...$ be iid with mean $mu$ and variance $sigma^2$. Let $N_{lambda}$ be poisson($lambda$) independent of the $X_i$'s.
(a) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-N_{lambda}mu}{sqrt{lambda}}.$$
(b) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-lambdamu}{sqrt{lambda}}.$$
(c) For which random variables $X$ will the two limits be the same?
My solution:
Let $Y_{lambda}$ be the quotient given in the problem. Then $mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}(phi_{X'_1}(frac{t}{lambda} ))^nfrac{e^{-lambda} lambda^n}{n!}=sum_{n=0}^{infty}(1-sigma^2frac{t^2}{2lambda^2}+o(frac{t^2}{lambda^2}))^n frac{e^{-lambda}lambda^n}{n!}$
where $X'=X-mu$. Can the above sum be simplified as $lambda$ goes to $infty$?
real-analysis probability-theory characteristic-functions poisson-process
real-analysis probability-theory characteristic-functions poisson-process
asked Nov 19 at 6:11
S_Alex
788
788
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
Note that $sum_{n=0}^infty z^nmathbb P(N_lambda =n)=e^{lambda(z-1)}$ is a probability generating function of $N_lambda$. You need also to replace $lambda$ in denominator by $sqrt{lambda}$. Then
$$mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}left(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)right)^nfrac{e^{-lambda} lambda^n}{n!}
$$
$$
=e^{lambdaleft(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)-1right)}=
e^{lambdaleft(1-sigma^2frac{t^2}{2lambda}+oleft(frac{t^2}{lambda}right)-1right)} to e^{-frac{t^2sigma^2}{2}}.
$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Note that $sum_{n=0}^infty z^nmathbb P(N_lambda =n)=e^{lambda(z-1)}$ is a probability generating function of $N_lambda$. You need also to replace $lambda$ in denominator by $sqrt{lambda}$. Then
$$mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}left(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)right)^nfrac{e^{-lambda} lambda^n}{n!}
$$
$$
=e^{lambdaleft(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)-1right)}=
e^{lambdaleft(1-sigma^2frac{t^2}{2lambda}+oleft(frac{t^2}{lambda}right)-1right)} to e^{-frac{t^2sigma^2}{2}}.
$$
add a comment |
up vote
1
down vote
Note that $sum_{n=0}^infty z^nmathbb P(N_lambda =n)=e^{lambda(z-1)}$ is a probability generating function of $N_lambda$. You need also to replace $lambda$ in denominator by $sqrt{lambda}$. Then
$$mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}left(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)right)^nfrac{e^{-lambda} lambda^n}{n!}
$$
$$
=e^{lambdaleft(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)-1right)}=
e^{lambdaleft(1-sigma^2frac{t^2}{2lambda}+oleft(frac{t^2}{lambda}right)-1right)} to e^{-frac{t^2sigma^2}{2}}.
$$
add a comment |
up vote
1
down vote
up vote
1
down vote
Note that $sum_{n=0}^infty z^nmathbb P(N_lambda =n)=e^{lambda(z-1)}$ is a probability generating function of $N_lambda$. You need also to replace $lambda$ in denominator by $sqrt{lambda}$. Then
$$mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}left(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)right)^nfrac{e^{-lambda} lambda^n}{n!}
$$
$$
=e^{lambdaleft(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)-1right)}=
e^{lambdaleft(1-sigma^2frac{t^2}{2lambda}+oleft(frac{t^2}{lambda}right)-1right)} to e^{-frac{t^2sigma^2}{2}}.
$$
Note that $sum_{n=0}^infty z^nmathbb P(N_lambda =n)=e^{lambda(z-1)}$ is a probability generating function of $N_lambda$. You need also to replace $lambda$ in denominator by $sqrt{lambda}$. Then
$$mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}left(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)right)^nfrac{e^{-lambda} lambda^n}{n!}
$$
$$
=e^{lambdaleft(phi_{X'_1}left(frac{t}{sqrt{lambda}}right)-1right)}=
e^{lambdaleft(1-sigma^2frac{t^2}{2lambda}+oleft(frac{t^2}{lambda}right)-1right)} to e^{-frac{t^2sigma^2}{2}}.
$$
answered Nov 20 at 2:40
NCh
6,0882722
6,0882722
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004584%2fpoisson-and-convergence-in-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown