Convergence of third moments when second moments are uniformly bounded.
Suppose $lambda_n, ngeq 1 $ are $sigma $-finite measures on $mathbb{R}$ such that $$ sup_{ngeq 1} int_{[-1,1]}x^2 lambda_n(dx) < infty $$ and $$forall delta > 0, exists n_0 geq 1, forall n geq n_0: lambda_n(mathbb{R} setminus [-delta,delta]) = 0. $$ I am trying to prove that $$lim_{nto infty} int_{mathbb{R}}vert xvert ^3 lambda_n(dx) = 0.$$ I came across this result in "Probability in Banach Spaces - Stable and Infinitely Divisible Distributions" by Werner Linde. It is stated in Proposition 5.6.1.
integration probability-theory measure-theory weak-convergence
add a comment |
Suppose $lambda_n, ngeq 1 $ are $sigma $-finite measures on $mathbb{R}$ such that $$ sup_{ngeq 1} int_{[-1,1]}x^2 lambda_n(dx) < infty $$ and $$forall delta > 0, exists n_0 geq 1, forall n geq n_0: lambda_n(mathbb{R} setminus [-delta,delta]) = 0. $$ I am trying to prove that $$lim_{nto infty} int_{mathbb{R}}vert xvert ^3 lambda_n(dx) = 0.$$ I came across this result in "Probability in Banach Spaces - Stable and Infinitely Divisible Distributions" by Werner Linde. It is stated in Proposition 5.6.1.
integration probability-theory measure-theory weak-convergence
add a comment |
Suppose $lambda_n, ngeq 1 $ are $sigma $-finite measures on $mathbb{R}$ such that $$ sup_{ngeq 1} int_{[-1,1]}x^2 lambda_n(dx) < infty $$ and $$forall delta > 0, exists n_0 geq 1, forall n geq n_0: lambda_n(mathbb{R} setminus [-delta,delta]) = 0. $$ I am trying to prove that $$lim_{nto infty} int_{mathbb{R}}vert xvert ^3 lambda_n(dx) = 0.$$ I came across this result in "Probability in Banach Spaces - Stable and Infinitely Divisible Distributions" by Werner Linde. It is stated in Proposition 5.6.1.
integration probability-theory measure-theory weak-convergence
Suppose $lambda_n, ngeq 1 $ are $sigma $-finite measures on $mathbb{R}$ such that $$ sup_{ngeq 1} int_{[-1,1]}x^2 lambda_n(dx) < infty $$ and $$forall delta > 0, exists n_0 geq 1, forall n geq n_0: lambda_n(mathbb{R} setminus [-delta,delta]) = 0. $$ I am trying to prove that $$lim_{nto infty} int_{mathbb{R}}vert xvert ^3 lambda_n(dx) = 0.$$ I came across this result in "Probability in Banach Spaces - Stable and Infinitely Divisible Distributions" by Werner Linde. It is stated in Proposition 5.6.1.
integration probability-theory measure-theory weak-convergence
integration probability-theory measure-theory weak-convergence
asked Nov 27 '18 at 21:30
M. Ost
483
483
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
$$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
$$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
Thus, for $ngeq max{ N, n_0(N) } $
$$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
leq 0 + frac{c}{n} < varepsilon. $$
Hence, we get
$$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016325%2fconvergence-of-third-moments-when-second-moments-are-uniformly-bounded%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
$$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
$$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
Thus, for $ngeq max{ N, n_0(N) } $
$$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
leq 0 + frac{c}{n} < varepsilon. $$
Hence, we get
$$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$
add a comment |
Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
$$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
$$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
Thus, for $ngeq max{ N, n_0(N) } $
$$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
leq 0 + frac{c}{n} < varepsilon. $$
Hence, we get
$$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$
add a comment |
Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
$$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
$$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
Thus, for $ngeq max{ N, n_0(N) } $
$$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
leq 0 + frac{c}{n} < varepsilon. $$
Hence, we get
$$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$
Let $c:=sup_{ngeq 1} int_{[-1,1]} x^2 lambda_n(dx) $. Then we have
$$ int_{[-1/m, 1/m]} vert x vert^3 lambda_n(dx) leq int_{[-1/m, 1/m]} frac{1}{m}vert x vert^2 lambda_n(dx) leq frac{c}{m} $$
On the other hand there exists $n_0(m)in mathbb{N}$ such that for all $ngeq n_0$ holds
$$ lambda_n(mathbb{R}setminus [-frac{1}{m}, frac{1}{m}]) =0. $$
Let $varepsilon>0$ and pick $Nin mathbb{N}$ such that $c/N<varepsilon$.
Thus, for $ngeq max{ N, n_0(N) } $
$$ int_mathbb{R} vert x vert^3 lambda_n(dx) = int_{mathbb{R}setminus [-1/n, 1/n]} vert x vert^3 lambda_n(dx) + int_{[-1/n, 1/n]} vert x vert^3 lambda_n(dx)
leq 0 + frac{c}{n} < varepsilon. $$
Hence, we get
$$ lim_{nrightarrow infty} int_mathbb{R} vert x vert^3 lambda_n(dx) = 0. $$
edited Nov 27 '18 at 22:27
answered Nov 27 '18 at 21:56
Severin Schraven
5,7131833
5,7131833
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016325%2fconvergence-of-third-moments-when-second-moments-are-uniformly-bounded%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown