How to prove the convergence of a generalized Integral in $mathbb{R}^3$












0














I know the integral of $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dy$ converges for any $xin mathbb{R}^3$. Would someone help me prove the bound of integeral is independent of $x$? i.e. $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dyle C$, where $C$ is independent of $x$.










share|cite|improve this question




















  • 1




    Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
    – gimusi
    Nov 27 '18 at 21:36










  • Fubini + translation invariance of Lebesgue measure.
    – Matematleta
    Nov 27 '18 at 21:57










  • No, I mean $x, y in mathbb{R}^3$
    – user1776247
    Nov 27 '18 at 22:23










  • Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
    – Michael
    Nov 28 '18 at 3:36










  • Thank you very much! I make an error of the expression.
    – user1776247
    Nov 28 '18 at 14:40
















0














I know the integral of $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dy$ converges for any $xin mathbb{R}^3$. Would someone help me prove the bound of integeral is independent of $x$? i.e. $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dyle C$, where $C$ is independent of $x$.










share|cite|improve this question




















  • 1




    Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
    – gimusi
    Nov 27 '18 at 21:36










  • Fubini + translation invariance of Lebesgue measure.
    – Matematleta
    Nov 27 '18 at 21:57










  • No, I mean $x, y in mathbb{R}^3$
    – user1776247
    Nov 27 '18 at 22:23










  • Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
    – Michael
    Nov 28 '18 at 3:36










  • Thank you very much! I make an error of the expression.
    – user1776247
    Nov 28 '18 at 14:40














0












0








0







I know the integral of $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dy$ converges for any $xin mathbb{R}^3$. Would someone help me prove the bound of integeral is independent of $x$? i.e. $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dyle C$, where $C$ is independent of $x$.










share|cite|improve this question















I know the integral of $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dy$ converges for any $xin mathbb{R}^3$. Would someone help me prove the bound of integeral is independent of $x$? i.e. $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dyle C$, where $C$ is independent of $x$.







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 28 '18 at 14:40

























asked Nov 27 '18 at 21:33









user1776247

12




12








  • 1




    Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
    – gimusi
    Nov 27 '18 at 21:36










  • Fubini + translation invariance of Lebesgue measure.
    – Matematleta
    Nov 27 '18 at 21:57










  • No, I mean $x, y in mathbb{R}^3$
    – user1776247
    Nov 27 '18 at 22:23










  • Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
    – Michael
    Nov 28 '18 at 3:36










  • Thank you very much! I make an error of the expression.
    – user1776247
    Nov 28 '18 at 14:40














  • 1




    Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
    – gimusi
    Nov 27 '18 at 21:36










  • Fubini + translation invariance of Lebesgue measure.
    – Matematleta
    Nov 27 '18 at 21:57










  • No, I mean $x, y in mathbb{R}^3$
    – user1776247
    Nov 27 '18 at 22:23










  • Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
    – Michael
    Nov 28 '18 at 3:36










  • Thank you very much! I make an error of the expression.
    – user1776247
    Nov 28 '18 at 14:40








1




1




Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
– gimusi
Nov 27 '18 at 21:36




Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
– gimusi
Nov 27 '18 at 21:36












Fubini + translation invariance of Lebesgue measure.
– Matematleta
Nov 27 '18 at 21:57




Fubini + translation invariance of Lebesgue measure.
– Matematleta
Nov 27 '18 at 21:57












No, I mean $x, y in mathbb{R}^3$
– user1776247
Nov 27 '18 at 22:23




No, I mean $x, y in mathbb{R}^3$
– user1776247
Nov 27 '18 at 22:23












Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
– Michael
Nov 28 '18 at 3:36




Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
– Michael
Nov 28 '18 at 3:36












Thank you very much! I make an error of the expression.
– user1776247
Nov 28 '18 at 14:40




Thank you very much! I make an error of the expression.
– user1776247
Nov 28 '18 at 14:40










1 Answer
1






active

oldest

votes


















0














We only need to prove when $|x|>1$.



$quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016330%2fhow-to-prove-the-convergence-of-a-generalized-integral-in-mathbbr3%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    We only need to prove when $|x|>1$.



    $quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.






    share|cite|improve this answer




























      0














      We only need to prove when $|x|>1$.



      $quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.






      share|cite|improve this answer


























        0












        0








        0






        We only need to prove when $|x|>1$.



        $quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.






        share|cite|improve this answer














        We only need to prove when $|x|>1$.



        $quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 28 '18 at 15:21

























        answered Nov 28 '18 at 15:15









        user1776247

        12




        12






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016330%2fhow-to-prove-the-convergence-of-a-generalized-integral-in-mathbbr3%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten