How to prove the convergence of a generalized Integral in $mathbb{R}^3$
I know the integral of $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dy$ converges for any $xin mathbb{R}^3$. Would someone help me prove the bound of integeral is independent of $x$? i.e. $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dyle C$, where $C$ is independent of $x$.
integration
add a comment |
I know the integral of $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dy$ converges for any $xin mathbb{R}^3$. Would someone help me prove the bound of integeral is independent of $x$? i.e. $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dyle C$, where $C$ is independent of $x$.
integration
1
Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
– gimusi
Nov 27 '18 at 21:36
Fubini + translation invariance of Lebesgue measure.
– Matematleta
Nov 27 '18 at 21:57
No, I mean $x, y in mathbb{R}^3$
– user1776247
Nov 27 '18 at 22:23
Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
– Michael
Nov 28 '18 at 3:36
Thank you very much! I make an error of the expression.
– user1776247
Nov 28 '18 at 14:40
add a comment |
I know the integral of $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dy$ converges for any $xin mathbb{R}^3$. Would someone help me prove the bound of integeral is independent of $x$? i.e. $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dyle C$, where $C$ is independent of $x$.
integration
I know the integral of $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dy$ converges for any $xin mathbb{R}^3$. Would someone help me prove the bound of integeral is independent of $x$? i.e. $displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dyle C$, where $C$ is independent of $x$.
integration
integration
edited Nov 28 '18 at 14:40
asked Nov 27 '18 at 21:33
user1776247
12
12
1
Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
– gimusi
Nov 27 '18 at 21:36
Fubini + translation invariance of Lebesgue measure.
– Matematleta
Nov 27 '18 at 21:57
No, I mean $x, y in mathbb{R}^3$
– user1776247
Nov 27 '18 at 22:23
Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
– Michael
Nov 28 '18 at 3:36
Thank you very much! I make an error of the expression.
– user1776247
Nov 28 '18 at 14:40
add a comment |
1
Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
– gimusi
Nov 27 '18 at 21:36
Fubini + translation invariance of Lebesgue measure.
– Matematleta
Nov 27 '18 at 21:57
No, I mean $x, y in mathbb{R}^3$
– user1776247
Nov 27 '18 at 22:23
Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
– Michael
Nov 28 '18 at 3:36
Thank you very much! I make an error of the expression.
– user1776247
Nov 28 '18 at 14:40
1
1
Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
– gimusi
Nov 27 '18 at 21:36
Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
– gimusi
Nov 27 '18 at 21:36
Fubini + translation invariance of Lebesgue measure.
– Matematleta
Nov 27 '18 at 21:57
Fubini + translation invariance of Lebesgue measure.
– Matematleta
Nov 27 '18 at 21:57
No, I mean $x, y in mathbb{R}^3$
– user1776247
Nov 27 '18 at 22:23
No, I mean $x, y in mathbb{R}^3$
– user1776247
Nov 27 '18 at 22:23
Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
– Michael
Nov 28 '18 at 3:36
Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
– Michael
Nov 28 '18 at 3:36
Thank you very much! I make an error of the expression.
– user1776247
Nov 28 '18 at 14:40
Thank you very much! I make an error of the expression.
– user1776247
Nov 28 '18 at 14:40
add a comment |
1 Answer
1
active
oldest
votes
We only need to prove when $|x|>1$.
$quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016330%2fhow-to-prove-the-convergence-of-a-generalized-integral-in-mathbbr3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
We only need to prove when $|x|>1$.
$quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.
add a comment |
We only need to prove when $|x|>1$.
$quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.
add a comment |
We only need to prove when $|x|>1$.
$quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.
We only need to prove when $|x|>1$.
$quaddisplaystyleiiint_{R^3} dfrac{|x|}{(1+|x-y|)^2|y|^2} dy = iiint_{R^3} dfrac{|x|}{(1+|y|)^2|x-y|^2} dy \displaystyle= iiint_{R^3} dfrac{1}{(frac 1{|x|}+|z|)^2|frac x{|x|}-z|^2} dz le iiint_{R^3} dfrac{1}{|z|^2|vec{1}-z|^2} dz$.
edited Nov 28 '18 at 15:21
answered Nov 28 '18 at 15:15
user1776247
12
12
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016330%2fhow-to-prove-the-convergence-of-a-generalized-integral-in-mathbbr3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Do you mean $$displaystyleiiint_{R^3} dfrac{1}{(1+|x-y|)^2|y|^2} dxdydz$$
– gimusi
Nov 27 '18 at 21:36
Fubini + translation invariance of Lebesgue measure.
– Matematleta
Nov 27 '18 at 21:57
No, I mean $x, y in mathbb{R}^3$
– user1776247
Nov 27 '18 at 22:23
Proving a bound does not depend on x does not mean the value of the integral does not depend on x.
– Michael
Nov 28 '18 at 3:36
Thank you very much! I make an error of the expression.
– user1776247
Nov 28 '18 at 14:40