Give upper and lower bounds for $left|frac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}right|$
$begingroup$
Give upper and lower bounds for $left|frac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}right|$
The only way that book explained up to this point in other examples uses this kind of technique:
$|sin^3{na}|le1$; $-3lesin^3{na}-2le-1$
$-1lecos{b}le1$; $-1/2le(cos{b})/2le1/2$;$1/2le1+(cos{b})/2le3/2$;
$2/3le1/(1+(cos{b})/2)le2$; $(2/3)^nle(1/(1+(cos{b})/2))^nle(2)^n$
So, $-1(2^n)lefrac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}le-3left(frac23right)^n$
However, this doesn't make sense.
analysis upper-lower-bounds
$endgroup$
add a comment |
$begingroup$
Give upper and lower bounds for $left|frac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}right|$
The only way that book explained up to this point in other examples uses this kind of technique:
$|sin^3{na}|le1$; $-3lesin^3{na}-2le-1$
$-1lecos{b}le1$; $-1/2le(cos{b})/2le1/2$;$1/2le1+(cos{b})/2le3/2$;
$2/3le1/(1+(cos{b})/2)le2$; $(2/3)^nle(1/(1+(cos{b})/2))^nle(2)^n$
So, $-1(2^n)lefrac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}le-3left(frac23right)^n$
However, this doesn't make sense.
analysis upper-lower-bounds
$endgroup$
add a comment |
$begingroup$
Give upper and lower bounds for $left|frac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}right|$
The only way that book explained up to this point in other examples uses this kind of technique:
$|sin^3{na}|le1$; $-3lesin^3{na}-2le-1$
$-1lecos{b}le1$; $-1/2le(cos{b})/2le1/2$;$1/2le1+(cos{b})/2le3/2$;
$2/3le1/(1+(cos{b})/2)le2$; $(2/3)^nle(1/(1+(cos{b})/2))^nle(2)^n$
So, $-1(2^n)lefrac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}le-3left(frac23right)^n$
However, this doesn't make sense.
analysis upper-lower-bounds
$endgroup$
Give upper and lower bounds for $left|frac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}right|$
The only way that book explained up to this point in other examples uses this kind of technique:
$|sin^3{na}|le1$; $-3lesin^3{na}-2le-1$
$-1lecos{b}le1$; $-1/2le(cos{b})/2le1/2$;$1/2le1+(cos{b})/2le3/2$;
$2/3le1/(1+(cos{b})/2)le2$; $(2/3)^nle(1/(1+(cos{b})/2))^nle(2)^n$
So, $-1(2^n)lefrac{sin^3{na}-2}{left(1+frac{cos b}{2}right)^n}le-3left(frac23right)^n$
However, this doesn't make sense.
analysis upper-lower-bounds
analysis upper-lower-bounds
edited Dec 2 '18 at 12:39
José Carlos Santos
155k22124227
155k22124227
asked Dec 2 '18 at 11:14
Sargis IskandaryanSargis Iskandaryan
560112
560112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
There is n error in the last inequality.Let
$$
A=sin^3(n,a)-2,quad B=frac{1}{Bigl(1+dfrac{cos b}{2}Bigr)^n}.
$$
You have shown that
$$-3le Ale-1quadtext{and}quad Bigl(frac{2}{3}Bigr)^nle Ble2^n.$$
Since $B>0$, we have $-3,Ble A,Ble -B$ and
$$
-3times2^nle A,Ble-Bigl(frac{2}{3}Bigr)^n.
$$
This makes perfectly good sense. Taking absolute values we get
$$
Bigl(frac{2}{3}Bigr)^nle| A,B|le3times2^n.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022508%2fgive-upper-and-lower-bounds-for-left-frac-sin3na-2-left1-frac-cos-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There is n error in the last inequality.Let
$$
A=sin^3(n,a)-2,quad B=frac{1}{Bigl(1+dfrac{cos b}{2}Bigr)^n}.
$$
You have shown that
$$-3le Ale-1quadtext{and}quad Bigl(frac{2}{3}Bigr)^nle Ble2^n.$$
Since $B>0$, we have $-3,Ble A,Ble -B$ and
$$
-3times2^nle A,Ble-Bigl(frac{2}{3}Bigr)^n.
$$
This makes perfectly good sense. Taking absolute values we get
$$
Bigl(frac{2}{3}Bigr)^nle| A,B|le3times2^n.
$$
$endgroup$
add a comment |
$begingroup$
There is n error in the last inequality.Let
$$
A=sin^3(n,a)-2,quad B=frac{1}{Bigl(1+dfrac{cos b}{2}Bigr)^n}.
$$
You have shown that
$$-3le Ale-1quadtext{and}quad Bigl(frac{2}{3}Bigr)^nle Ble2^n.$$
Since $B>0$, we have $-3,Ble A,Ble -B$ and
$$
-3times2^nle A,Ble-Bigl(frac{2}{3}Bigr)^n.
$$
This makes perfectly good sense. Taking absolute values we get
$$
Bigl(frac{2}{3}Bigr)^nle| A,B|le3times2^n.
$$
$endgroup$
add a comment |
$begingroup$
There is n error in the last inequality.Let
$$
A=sin^3(n,a)-2,quad B=frac{1}{Bigl(1+dfrac{cos b}{2}Bigr)^n}.
$$
You have shown that
$$-3le Ale-1quadtext{and}quad Bigl(frac{2}{3}Bigr)^nle Ble2^n.$$
Since $B>0$, we have $-3,Ble A,Ble -B$ and
$$
-3times2^nle A,Ble-Bigl(frac{2}{3}Bigr)^n.
$$
This makes perfectly good sense. Taking absolute values we get
$$
Bigl(frac{2}{3}Bigr)^nle| A,B|le3times2^n.
$$
$endgroup$
There is n error in the last inequality.Let
$$
A=sin^3(n,a)-2,quad B=frac{1}{Bigl(1+dfrac{cos b}{2}Bigr)^n}.
$$
You have shown that
$$-3le Ale-1quadtext{and}quad Bigl(frac{2}{3}Bigr)^nle Ble2^n.$$
Since $B>0$, we have $-3,Ble A,Ble -B$ and
$$
-3times2^nle A,Ble-Bigl(frac{2}{3}Bigr)^n.
$$
This makes perfectly good sense. Taking absolute values we get
$$
Bigl(frac{2}{3}Bigr)^nle| A,B|le3times2^n.
$$
answered Dec 2 '18 at 12:38
Julián AguirreJulián Aguirre
68.1k24094
68.1k24094
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022508%2fgive-upper-and-lower-bounds-for-left-frac-sin3na-2-left1-frac-cos-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown