Is $h:xto expleft[-frac{x^2}{2}right]left(expleft[frac{x^4}{24n}right]-1right)$ increasing?
$begingroup$
I struggling to show this function ins increasing on $mathbb{R}^+$
$$h:xto expleft[-dfrac{x^2}{2}right]left(expleft[dfrac{x^4}{24n}right]-1right) qquad nin mathbb{N}^*$$
With the derivative
I've found
$$h'(x)=xe^{-frac{x^2}{2}}left[left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1right]$$
$h'(x)ge 0iff left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1ge 0$
and now I'm blocked...
real-analysis
$endgroup$
add a comment |
$begingroup$
I struggling to show this function ins increasing on $mathbb{R}^+$
$$h:xto expleft[-dfrac{x^2}{2}right]left(expleft[dfrac{x^4}{24n}right]-1right) qquad nin mathbb{N}^*$$
With the derivative
I've found
$$h'(x)=xe^{-frac{x^2}{2}}left[left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1right]$$
$h'(x)ge 0iff left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1ge 0$
and now I'm blocked...
real-analysis
$endgroup$
$begingroup$
What is the parameter $n$?
$endgroup$
– gimusi
Dec 2 '18 at 12:37
$begingroup$
$$nin mathbb{N}^*$$
$endgroup$
– Stu
Dec 2 '18 at 12:44
add a comment |
$begingroup$
I struggling to show this function ins increasing on $mathbb{R}^+$
$$h:xto expleft[-dfrac{x^2}{2}right]left(expleft[dfrac{x^4}{24n}right]-1right) qquad nin mathbb{N}^*$$
With the derivative
I've found
$$h'(x)=xe^{-frac{x^2}{2}}left[left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1right]$$
$h'(x)ge 0iff left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1ge 0$
and now I'm blocked...
real-analysis
$endgroup$
I struggling to show this function ins increasing on $mathbb{R}^+$
$$h:xto expleft[-dfrac{x^2}{2}right]left(expleft[dfrac{x^4}{24n}right]-1right) qquad nin mathbb{N}^*$$
With the derivative
I've found
$$h'(x)=xe^{-frac{x^2}{2}}left[left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1right]$$
$h'(x)ge 0iff left(dfrac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1ge 0$
and now I'm blocked...
real-analysis
real-analysis
edited Dec 2 '18 at 12:43
Stu
asked Dec 2 '18 at 12:32
StuStu
1,1761413
1,1761413
$begingroup$
What is the parameter $n$?
$endgroup$
– gimusi
Dec 2 '18 at 12:37
$begingroup$
$$nin mathbb{N}^*$$
$endgroup$
– Stu
Dec 2 '18 at 12:44
add a comment |
$begingroup$
What is the parameter $n$?
$endgroup$
– gimusi
Dec 2 '18 at 12:37
$begingroup$
$$nin mathbb{N}^*$$
$endgroup$
– Stu
Dec 2 '18 at 12:44
$begingroup$
What is the parameter $n$?
$endgroup$
– gimusi
Dec 2 '18 at 12:37
$begingroup$
What is the parameter $n$?
$endgroup$
– gimusi
Dec 2 '18 at 12:37
$begingroup$
$$nin mathbb{N}^*$$
$endgroup$
– Stu
Dec 2 '18 at 12:44
$begingroup$
$$nin mathbb{N}^*$$
$endgroup$
– Stu
Dec 2 '18 at 12:44
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have that
$$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
=-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$
then we need to prove that
$$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$
and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to
$$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$
and by $y=frac{x^2}{6n}in (0,1)$
$$(1-y)e^{frac32ny^2}-1le 0 $$
which doesn't hold for $n=2$ indeed
$$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$
and $f(y_1)>0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022579%2fis-hx-to-exp-left-fracx22-right-left-exp-left-fracx424n-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have that
$$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
=-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$
then we need to prove that
$$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$
and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to
$$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$
and by $y=frac{x^2}{6n}in (0,1)$
$$(1-y)e^{frac32ny^2}-1le 0 $$
which doesn't hold for $n=2$ indeed
$$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$
and $f(y_1)>0$.
$endgroup$
add a comment |
$begingroup$
We have that
$$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
=-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$
then we need to prove that
$$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$
and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to
$$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$
and by $y=frac{x^2}{6n}in (0,1)$
$$(1-y)e^{frac32ny^2}-1le 0 $$
which doesn't hold for $n=2$ indeed
$$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$
and $f(y_1)>0$.
$endgroup$
add a comment |
$begingroup$
We have that
$$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
=-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$
then we need to prove that
$$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$
and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to
$$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$
and by $y=frac{x^2}{6n}in (0,1)$
$$(1-y)e^{frac32ny^2}-1le 0 $$
which doesn't hold for $n=2$ indeed
$$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$
and $f(y_1)>0$.
$endgroup$
We have that
$$h'(x)=-xe^{-frac{x^2}{2}}left(e^{frac{x^4}{24n}}-1right)+frac{x^3}{6n}e^{-frac{x^2}{2}}e^{frac{x^4}{24n}}
=-xe^{-frac{x^2}{2}}left(left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1right)$$
then we need to prove that
$$left(frac{x^2}{6n}-1right)e^{frac{x^4}{24n}}+1 ge 0 $$
and for $frac{x^2}{6n}-1<0 iff x<sqrt{6n}$ it is equivalent to
$$left(1-frac{x^2}{6n}right)e^{frac{x^4}{24n}}-1le 0 $$
and by $y=frac{x^2}{6n}in (0,1)$
$$(1-y)e^{frac32ny^2}-1le 0 $$
which doesn't hold for $n=2$ indeed
$$f(y)=(1-y)e^{3y^2}-1 implies f'(y)=e^{3y^2}(-6y^2+6y-1)=0 implies y_{1,2}=frac12pmfrac{sqrt 3}6$$
and $f(y_1)>0$.
edited Dec 2 '18 at 13:26
answered Dec 2 '18 at 13:16
gimusigimusi
92.9k94494
92.9k94494
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022579%2fis-hx-to-exp-left-fracx22-right-left-exp-left-fracx424n-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is the parameter $n$?
$endgroup$
– gimusi
Dec 2 '18 at 12:37
$begingroup$
$$nin mathbb{N}^*$$
$endgroup$
– Stu
Dec 2 '18 at 12:44