Evaluate $int_1^efrac{1+x^2ln x}{x+x^2 ln x} dx$
$begingroup$
$$int_1^edfrac{1+x^2ln x}{x+x^2 ln x} dx$$
Attempt:
I have tried substitutions like $ln x = t$, but they are just not helping.
I end up with : $displaystyleint_0^1 dfrac{1+e^{2t}t}{1+ e^t t} dt $
Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?
calculus integration definite-integrals
$endgroup$
add a comment |
$begingroup$
$$int_1^edfrac{1+x^2ln x}{x+x^2 ln x} dx$$
Attempt:
I have tried substitutions like $ln x = t$, but they are just not helping.
I end up with : $displaystyleint_0^1 dfrac{1+e^{2t}t}{1+ e^t t} dt $
Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?
calculus integration definite-integrals
$endgroup$
$begingroup$
$ln x=t$ is a good substitution.
$endgroup$
– Nosrati
Jul 24 '18 at 2:57
add a comment |
$begingroup$
$$int_1^edfrac{1+x^2ln x}{x+x^2 ln x} dx$$
Attempt:
I have tried substitutions like $ln x = t$, but they are just not helping.
I end up with : $displaystyleint_0^1 dfrac{1+e^{2t}t}{1+ e^t t} dt $
Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?
calculus integration definite-integrals
$endgroup$
$$int_1^edfrac{1+x^2ln x}{x+x^2 ln x} dx$$
Attempt:
I have tried substitutions like $ln x = t$, but they are just not helping.
I end up with : $displaystyleint_0^1 dfrac{1+e^{2t}t}{1+ e^t t} dt $
Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?
calculus integration definite-integrals
calculus integration definite-integrals
edited Dec 13 '18 at 13:49
Martin Sleziak
44.7k10119272
44.7k10119272
asked Jul 24 '18 at 2:53
AbcdAbcd
3,05331236
3,05331236
$begingroup$
$ln x=t$ is a good substitution.
$endgroup$
– Nosrati
Jul 24 '18 at 2:57
add a comment |
$begingroup$
$ln x=t$ is a good substitution.
$endgroup$
– Nosrati
Jul 24 '18 at 2:57
$begingroup$
$ln x=t$ is a good substitution.
$endgroup$
– Nosrati
Jul 24 '18 at 2:57
$begingroup$
$ln x=t$ is a good substitution.
$endgroup$
– Nosrati
Jul 24 '18 at 2:57
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$
$endgroup$
2
$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37
add a comment |
$begingroup$
Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$
so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$
$endgroup$
$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860963%2fevaluate-int-1e-frac1x2-ln-xxx2-ln-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$
$endgroup$
2
$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37
add a comment |
$begingroup$
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$
$endgroup$
2
$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37
add a comment |
$begingroup$
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$
$endgroup$
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$
edited Jul 24 '18 at 3:11
answered Jul 24 '18 at 3:04
Mark ViolaMark Viola
133k1277174
133k1277174
2
$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37
add a comment |
2
$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37
2
2
$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37
$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37
add a comment |
$begingroup$
Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$
so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$
$endgroup$
$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22
add a comment |
$begingroup$
Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$
so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$
$endgroup$
$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22
add a comment |
$begingroup$
Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$
so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$
$endgroup$
Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$
so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$
answered Jul 24 '18 at 14:22
DXTDXT
5,9022731
5,9022731
$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22
add a comment |
$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22
$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22
$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860963%2fevaluate-int-1e-frac1x2-ln-xxx2-ln-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$ln x=t$ is a good substitution.
$endgroup$
– Nosrati
Jul 24 '18 at 2:57