Evaluate $int_1^efrac{1+x^2ln x}{x+x^2 ln x} dx$












7












$begingroup$



$$int_1^edfrac{1+x^2ln x}{x+x^2 ln x} dx$$




Attempt:



I have tried substitutions like $ln x = t$, but they are just not helping.



I end up with : $displaystyleint_0^1 dfrac{1+e^{2t}t}{1+ e^t t} dt $



Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $ln x=t$ is a good substitution.
    $endgroup$
    – Nosrati
    Jul 24 '18 at 2:57
















7












$begingroup$



$$int_1^edfrac{1+x^2ln x}{x+x^2 ln x} dx$$




Attempt:



I have tried substitutions like $ln x = t$, but they are just not helping.



I end up with : $displaystyleint_0^1 dfrac{1+e^{2t}t}{1+ e^t t} dt $



Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $ln x=t$ is a good substitution.
    $endgroup$
    – Nosrati
    Jul 24 '18 at 2:57














7












7








7


4



$begingroup$



$$int_1^edfrac{1+x^2ln x}{x+x^2 ln x} dx$$




Attempt:



I have tried substitutions like $ln x = t$, but they are just not helping.



I end up with : $displaystyleint_0^1 dfrac{1+e^{2t}t}{1+ e^t t} dt $



Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?










share|cite|improve this question











$endgroup$





$$int_1^edfrac{1+x^2ln x}{x+x^2 ln x} dx$$




Attempt:



I have tried substitutions like $ln x = t$, but they are just not helping.



I end up with : $displaystyleint_0^1 dfrac{1+e^{2t}t}{1+ e^t t} dt $



Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 13:49









Martin Sleziak

44.7k10119272




44.7k10119272










asked Jul 24 '18 at 2:53









AbcdAbcd

3,05331236




3,05331236












  • $begingroup$
    $ln x=t$ is a good substitution.
    $endgroup$
    – Nosrati
    Jul 24 '18 at 2:57


















  • $begingroup$
    $ln x=t$ is a good substitution.
    $endgroup$
    – Nosrati
    Jul 24 '18 at 2:57
















$begingroup$
$ln x=t$ is a good substitution.
$endgroup$
– Nosrati
Jul 24 '18 at 2:57




$begingroup$
$ln x=t$ is a good substitution.
$endgroup$
– Nosrati
Jul 24 '18 at 2:57










2 Answers
2






active

oldest

votes


















17












$begingroup$


The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.






We need not use any substitutions. Rather, we can write



$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
    $endgroup$
    – Claude Leibovici
    Jul 24 '18 at 4:37



















4












$begingroup$

Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$



Divide both Numerator and Denominator by $x^2$



so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$



so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    (+1) Nicely done.
    $endgroup$
    – Mark Viola
    Nov 5 '18 at 16:22











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860963%2fevaluate-int-1e-frac1x2-ln-xxx2-ln-x-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









17












$begingroup$


The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.






We need not use any substitutions. Rather, we can write



$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
    $endgroup$
    – Claude Leibovici
    Jul 24 '18 at 4:37
















17












$begingroup$


The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.






We need not use any substitutions. Rather, we can write



$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
    $endgroup$
    – Claude Leibovici
    Jul 24 '18 at 4:37














17












17








17





$begingroup$


The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.






We need not use any substitutions. Rather, we can write



$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$






share|cite|improve this answer











$endgroup$




The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.






We need not use any substitutions. Rather, we can write



$$begin{align}
int_1^e frac{1+x^2log(x)}{x+x^2log(x)},dx&=int_1^e frac{1-x+x+x^2log(x)}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e frac{1-x}{x+x^2log(x)},dx\\
&=(e-1)+int_1^e left(frac{1-x}{x+x^2log(x)}-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac{1+log(x)}{1+xlog(x)},dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
end{align}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jul 24 '18 at 3:11

























answered Jul 24 '18 at 3:04









Mark ViolaMark Viola

133k1277174




133k1277174








  • 2




    $begingroup$
    Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
    $endgroup$
    – Claude Leibovici
    Jul 24 '18 at 4:37














  • 2




    $begingroup$
    Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
    $endgroup$
    – Claude Leibovici
    Jul 24 '18 at 4:37








2




2




$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37




$begingroup$
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
$endgroup$
– Claude Leibovici
Jul 24 '18 at 4:37











4












$begingroup$

Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$



Divide both Numerator and Denominator by $x^2$



so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$



so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    (+1) Nicely done.
    $endgroup$
    – Mark Viola
    Nov 5 '18 at 16:22
















4












$begingroup$

Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$



Divide both Numerator and Denominator by $x^2$



so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$



so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    (+1) Nicely done.
    $endgroup$
    – Mark Viola
    Nov 5 '18 at 16:22














4












4








4





$begingroup$

Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$



Divide both Numerator and Denominator by $x^2$



so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$



so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$






share|cite|improve this answer









$endgroup$



Let $$I = int frac{1+x^2ln x}{x+x^2ln x}dx$$



Divide both Numerator and Denominator by $x^2$



so $$I = int frac{frac{1}{x^2}+ln x}{frac{1}{x}+ln x}dx = int frac{bigg(frac{1}{x}+ln xbigg)-bigg(frac{1}{x}-frac{1}{x^2}bigg)}{frac{1}{x}+ln x}dx$$



so $$I = x-ln bigg|frac{1}{x}+ln xbigg|+mathcal{C}.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jul 24 '18 at 14:22









DXTDXT

5,9022731




5,9022731












  • $begingroup$
    (+1) Nicely done.
    $endgroup$
    – Mark Viola
    Nov 5 '18 at 16:22


















  • $begingroup$
    (+1) Nicely done.
    $endgroup$
    – Mark Viola
    Nov 5 '18 at 16:22
















$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22




$begingroup$
(+1) Nicely done.
$endgroup$
– Mark Viola
Nov 5 '18 at 16:22


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860963%2fevaluate-int-1e-frac1x2-ln-xxx2-ln-x-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten