How to prove in K $ vdash_{p rightarrow lozenge square p} (square p rightarrow lozenge p)$?












2












$begingroup$


Let us denote $C$ the modal system obtained by adding the axiom $ alpha rightarrow lozenge square alpha$ to the axiom $K$ and all the propositional tautologies.



As said in the title, I'm looking for a K-proof for $$ vdash_C (square p rightarrow lozenge p),$$ but also for
$$vdash_C (lozenge p rightarrow square p).$$



I know these proofs should exist since a Kripke frame verifies the formula $p rightarrow lozenge square p$ if and only if it verifies $$ (1) forall x ( exists y : (x mathrel{R} y) text{ and } (y mathrel{R} z Rightarrow z = x) ).$$



It particular $(1)$ implies that the frame is serial ( i.e. $forall x (exists y : x mathrel{R} y)$), that is $ square p rightarrow lozenge p$ is true, and that the frame is functional ( i.e. ($x mathrel{R} y text{ and } x mathrel{R} z) Rightarrow y =z$), that is $lozenge p rightarrow square p$ is true.



Thank you for any answer !










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Let us denote $C$ the modal system obtained by adding the axiom $ alpha rightarrow lozenge square alpha$ to the axiom $K$ and all the propositional tautologies.



    As said in the title, I'm looking for a K-proof for $$ vdash_C (square p rightarrow lozenge p),$$ but also for
    $$vdash_C (lozenge p rightarrow square p).$$



    I know these proofs should exist since a Kripke frame verifies the formula $p rightarrow lozenge square p$ if and only if it verifies $$ (1) forall x ( exists y : (x mathrel{R} y) text{ and } (y mathrel{R} z Rightarrow z = x) ).$$



    It particular $(1)$ implies that the frame is serial ( i.e. $forall x (exists y : x mathrel{R} y)$), that is $ square p rightarrow lozenge p$ is true, and that the frame is functional ( i.e. ($x mathrel{R} y text{ and } x mathrel{R} z) Rightarrow y =z$), that is $lozenge p rightarrow square p$ is true.



    Thank you for any answer !










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Let us denote $C$ the modal system obtained by adding the axiom $ alpha rightarrow lozenge square alpha$ to the axiom $K$ and all the propositional tautologies.



      As said in the title, I'm looking for a K-proof for $$ vdash_C (square p rightarrow lozenge p),$$ but also for
      $$vdash_C (lozenge p rightarrow square p).$$



      I know these proofs should exist since a Kripke frame verifies the formula $p rightarrow lozenge square p$ if and only if it verifies $$ (1) forall x ( exists y : (x mathrel{R} y) text{ and } (y mathrel{R} z Rightarrow z = x) ).$$



      It particular $(1)$ implies that the frame is serial ( i.e. $forall x (exists y : x mathrel{R} y)$), that is $ square p rightarrow lozenge p$ is true, and that the frame is functional ( i.e. ($x mathrel{R} y text{ and } x mathrel{R} z) Rightarrow y =z$), that is $lozenge p rightarrow square p$ is true.



      Thank you for any answer !










      share|cite|improve this question











      $endgroup$




      Let us denote $C$ the modal system obtained by adding the axiom $ alpha rightarrow lozenge square alpha$ to the axiom $K$ and all the propositional tautologies.



      As said in the title, I'm looking for a K-proof for $$ vdash_C (square p rightarrow lozenge p),$$ but also for
      $$vdash_C (lozenge p rightarrow square p).$$



      I know these proofs should exist since a Kripke frame verifies the formula $p rightarrow lozenge square p$ if and only if it verifies $$ (1) forall x ( exists y : (x mathrel{R} y) text{ and } (y mathrel{R} z Rightarrow z = x) ).$$



      It particular $(1)$ implies that the frame is serial ( i.e. $forall x (exists y : x mathrel{R} y)$), that is $ square p rightarrow lozenge p$ is true, and that the frame is functional ( i.e. ($x mathrel{R} y text{ and } x mathrel{R} z) Rightarrow y =z$), that is $lozenge p rightarrow square p$ is true.



      Thank you for any answer !







      logic modal-logic kripke-models






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 14 '18 at 10:59







      L. De Rudder

















      asked Dec 13 '18 at 15:28









      L. De RudderL. De Rudder

      335




      335






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          (For the first): Consider the set up where $neg p$ holds at the actual world and where no world is accessible from that world. Then the lhs of your sequent evaluates as true, and the right false ... (since $Box p$ is vacuously true, and $Diamond p$ is false).



          (For the second): Consider the two-world set-up where in the actual self-accessible world $neg p$, and there is one other accessible world where $p$. The lhs of your sequent evaluates as true, and the right false ...



          So something is amiss there? Neither is a valid K-sequent so neither is K-provable.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I might be mistaken, but I think we can't deduct $p$ from $square p$ unless we are working with reflexive Kripke frames, which is not the case in general.
            $endgroup$
            – L. De Rudder
            Dec 13 '18 at 16:15










          • $begingroup$
            Oops, getting my K's and T's entangled!
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 16:58






          • 2




            $begingroup$
            But I've given you, in each case, a K-model where the l.h. wff is true and the r.h. wff false. So (by soundness for the K proof system) the l.h. doesn't K-prove the r.h. wff. The implications aren't true.
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 20:32








          • 2




            $begingroup$
            Agree on nomenclature of en.wikipedia.org/wiki/Kripke_semantics Then K is sound w.r.t. the inferences valid in every K frame, so in particular if $alpha vdash_K beta$, then given any K frame, and any valuation of the relevant atoms in that frame, if $alpha$ comes out true, so does $beta$. So it suffices to refute $alpha vdash_K beta$ to find one K frame and one valuation on that frame which makes $alpha$ true and $beta$ false. No?
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 23:14








          • 1




            $begingroup$
            I'd have said "Let C be the modal system you get by adding to K all axioms of the form $alpha to DiamondBoxalpha$. Then how do we show $vdash_C Box p to Diamond p$, etc." [I've plucked the label "C" out of the air -- I don't know off-hand if there is a label already in use.]
            $endgroup$
            – Peter Smith
            Dec 14 '18 at 10:42











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038153%2fhow-to-prove-in-k-vdash-p-rightarrow-lozenge-square-p-square-p-righta%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          (For the first): Consider the set up where $neg p$ holds at the actual world and where no world is accessible from that world. Then the lhs of your sequent evaluates as true, and the right false ... (since $Box p$ is vacuously true, and $Diamond p$ is false).



          (For the second): Consider the two-world set-up where in the actual self-accessible world $neg p$, and there is one other accessible world where $p$. The lhs of your sequent evaluates as true, and the right false ...



          So something is amiss there? Neither is a valid K-sequent so neither is K-provable.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I might be mistaken, but I think we can't deduct $p$ from $square p$ unless we are working with reflexive Kripke frames, which is not the case in general.
            $endgroup$
            – L. De Rudder
            Dec 13 '18 at 16:15










          • $begingroup$
            Oops, getting my K's and T's entangled!
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 16:58






          • 2




            $begingroup$
            But I've given you, in each case, a K-model where the l.h. wff is true and the r.h. wff false. So (by soundness for the K proof system) the l.h. doesn't K-prove the r.h. wff. The implications aren't true.
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 20:32








          • 2




            $begingroup$
            Agree on nomenclature of en.wikipedia.org/wiki/Kripke_semantics Then K is sound w.r.t. the inferences valid in every K frame, so in particular if $alpha vdash_K beta$, then given any K frame, and any valuation of the relevant atoms in that frame, if $alpha$ comes out true, so does $beta$. So it suffices to refute $alpha vdash_K beta$ to find one K frame and one valuation on that frame which makes $alpha$ true and $beta$ false. No?
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 23:14








          • 1




            $begingroup$
            I'd have said "Let C be the modal system you get by adding to K all axioms of the form $alpha to DiamondBoxalpha$. Then how do we show $vdash_C Box p to Diamond p$, etc." [I've plucked the label "C" out of the air -- I don't know off-hand if there is a label already in use.]
            $endgroup$
            – Peter Smith
            Dec 14 '18 at 10:42
















          2












          $begingroup$

          (For the first): Consider the set up where $neg p$ holds at the actual world and where no world is accessible from that world. Then the lhs of your sequent evaluates as true, and the right false ... (since $Box p$ is vacuously true, and $Diamond p$ is false).



          (For the second): Consider the two-world set-up where in the actual self-accessible world $neg p$, and there is one other accessible world where $p$. The lhs of your sequent evaluates as true, and the right false ...



          So something is amiss there? Neither is a valid K-sequent so neither is K-provable.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I might be mistaken, but I think we can't deduct $p$ from $square p$ unless we are working with reflexive Kripke frames, which is not the case in general.
            $endgroup$
            – L. De Rudder
            Dec 13 '18 at 16:15










          • $begingroup$
            Oops, getting my K's and T's entangled!
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 16:58






          • 2




            $begingroup$
            But I've given you, in each case, a K-model where the l.h. wff is true and the r.h. wff false. So (by soundness for the K proof system) the l.h. doesn't K-prove the r.h. wff. The implications aren't true.
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 20:32








          • 2




            $begingroup$
            Agree on nomenclature of en.wikipedia.org/wiki/Kripke_semantics Then K is sound w.r.t. the inferences valid in every K frame, so in particular if $alpha vdash_K beta$, then given any K frame, and any valuation of the relevant atoms in that frame, if $alpha$ comes out true, so does $beta$. So it suffices to refute $alpha vdash_K beta$ to find one K frame and one valuation on that frame which makes $alpha$ true and $beta$ false. No?
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 23:14








          • 1




            $begingroup$
            I'd have said "Let C be the modal system you get by adding to K all axioms of the form $alpha to DiamondBoxalpha$. Then how do we show $vdash_C Box p to Diamond p$, etc." [I've plucked the label "C" out of the air -- I don't know off-hand if there is a label already in use.]
            $endgroup$
            – Peter Smith
            Dec 14 '18 at 10:42














          2












          2








          2





          $begingroup$

          (For the first): Consider the set up where $neg p$ holds at the actual world and where no world is accessible from that world. Then the lhs of your sequent evaluates as true, and the right false ... (since $Box p$ is vacuously true, and $Diamond p$ is false).



          (For the second): Consider the two-world set-up where in the actual self-accessible world $neg p$, and there is one other accessible world where $p$. The lhs of your sequent evaluates as true, and the right false ...



          So something is amiss there? Neither is a valid K-sequent so neither is K-provable.






          share|cite|improve this answer











          $endgroup$



          (For the first): Consider the set up where $neg p$ holds at the actual world and where no world is accessible from that world. Then the lhs of your sequent evaluates as true, and the right false ... (since $Box p$ is vacuously true, and $Diamond p$ is false).



          (For the second): Consider the two-world set-up where in the actual self-accessible world $neg p$, and there is one other accessible world where $p$. The lhs of your sequent evaluates as true, and the right false ...



          So something is amiss there? Neither is a valid K-sequent so neither is K-provable.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 14 '18 at 8:50

























          answered Dec 13 '18 at 15:51









          Peter SmithPeter Smith

          40.9k340120




          40.9k340120












          • $begingroup$
            I might be mistaken, but I think we can't deduct $p$ from $square p$ unless we are working with reflexive Kripke frames, which is not the case in general.
            $endgroup$
            – L. De Rudder
            Dec 13 '18 at 16:15










          • $begingroup$
            Oops, getting my K's and T's entangled!
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 16:58






          • 2




            $begingroup$
            But I've given you, in each case, a K-model where the l.h. wff is true and the r.h. wff false. So (by soundness for the K proof system) the l.h. doesn't K-prove the r.h. wff. The implications aren't true.
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 20:32








          • 2




            $begingroup$
            Agree on nomenclature of en.wikipedia.org/wiki/Kripke_semantics Then K is sound w.r.t. the inferences valid in every K frame, so in particular if $alpha vdash_K beta$, then given any K frame, and any valuation of the relevant atoms in that frame, if $alpha$ comes out true, so does $beta$. So it suffices to refute $alpha vdash_K beta$ to find one K frame and one valuation on that frame which makes $alpha$ true and $beta$ false. No?
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 23:14








          • 1




            $begingroup$
            I'd have said "Let C be the modal system you get by adding to K all axioms of the form $alpha to DiamondBoxalpha$. Then how do we show $vdash_C Box p to Diamond p$, etc." [I've plucked the label "C" out of the air -- I don't know off-hand if there is a label already in use.]
            $endgroup$
            – Peter Smith
            Dec 14 '18 at 10:42


















          • $begingroup$
            I might be mistaken, but I think we can't deduct $p$ from $square p$ unless we are working with reflexive Kripke frames, which is not the case in general.
            $endgroup$
            – L. De Rudder
            Dec 13 '18 at 16:15










          • $begingroup$
            Oops, getting my K's and T's entangled!
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 16:58






          • 2




            $begingroup$
            But I've given you, in each case, a K-model where the l.h. wff is true and the r.h. wff false. So (by soundness for the K proof system) the l.h. doesn't K-prove the r.h. wff. The implications aren't true.
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 20:32








          • 2




            $begingroup$
            Agree on nomenclature of en.wikipedia.org/wiki/Kripke_semantics Then K is sound w.r.t. the inferences valid in every K frame, so in particular if $alpha vdash_K beta$, then given any K frame, and any valuation of the relevant atoms in that frame, if $alpha$ comes out true, so does $beta$. So it suffices to refute $alpha vdash_K beta$ to find one K frame and one valuation on that frame which makes $alpha$ true and $beta$ false. No?
            $endgroup$
            – Peter Smith
            Dec 13 '18 at 23:14








          • 1




            $begingroup$
            I'd have said "Let C be the modal system you get by adding to K all axioms of the form $alpha to DiamondBoxalpha$. Then how do we show $vdash_C Box p to Diamond p$, etc." [I've plucked the label "C" out of the air -- I don't know off-hand if there is a label already in use.]
            $endgroup$
            – Peter Smith
            Dec 14 '18 at 10:42
















          $begingroup$
          I might be mistaken, but I think we can't deduct $p$ from $square p$ unless we are working with reflexive Kripke frames, which is not the case in general.
          $endgroup$
          – L. De Rudder
          Dec 13 '18 at 16:15




          $begingroup$
          I might be mistaken, but I think we can't deduct $p$ from $square p$ unless we are working with reflexive Kripke frames, which is not the case in general.
          $endgroup$
          – L. De Rudder
          Dec 13 '18 at 16:15












          $begingroup$
          Oops, getting my K's and T's entangled!
          $endgroup$
          – Peter Smith
          Dec 13 '18 at 16:58




          $begingroup$
          Oops, getting my K's and T's entangled!
          $endgroup$
          – Peter Smith
          Dec 13 '18 at 16:58




          2




          2




          $begingroup$
          But I've given you, in each case, a K-model where the l.h. wff is true and the r.h. wff false. So (by soundness for the K proof system) the l.h. doesn't K-prove the r.h. wff. The implications aren't true.
          $endgroup$
          – Peter Smith
          Dec 13 '18 at 20:32






          $begingroup$
          But I've given you, in each case, a K-model where the l.h. wff is true and the r.h. wff false. So (by soundness for the K proof system) the l.h. doesn't K-prove the r.h. wff. The implications aren't true.
          $endgroup$
          – Peter Smith
          Dec 13 '18 at 20:32






          2




          2




          $begingroup$
          Agree on nomenclature of en.wikipedia.org/wiki/Kripke_semantics Then K is sound w.r.t. the inferences valid in every K frame, so in particular if $alpha vdash_K beta$, then given any K frame, and any valuation of the relevant atoms in that frame, if $alpha$ comes out true, so does $beta$. So it suffices to refute $alpha vdash_K beta$ to find one K frame and one valuation on that frame which makes $alpha$ true and $beta$ false. No?
          $endgroup$
          – Peter Smith
          Dec 13 '18 at 23:14






          $begingroup$
          Agree on nomenclature of en.wikipedia.org/wiki/Kripke_semantics Then K is sound w.r.t. the inferences valid in every K frame, so in particular if $alpha vdash_K beta$, then given any K frame, and any valuation of the relevant atoms in that frame, if $alpha$ comes out true, so does $beta$. So it suffices to refute $alpha vdash_K beta$ to find one K frame and one valuation on that frame which makes $alpha$ true and $beta$ false. No?
          $endgroup$
          – Peter Smith
          Dec 13 '18 at 23:14






          1




          1




          $begingroup$
          I'd have said "Let C be the modal system you get by adding to K all axioms of the form $alpha to DiamondBoxalpha$. Then how do we show $vdash_C Box p to Diamond p$, etc." [I've plucked the label "C" out of the air -- I don't know off-hand if there is a label already in use.]
          $endgroup$
          – Peter Smith
          Dec 14 '18 at 10:42




          $begingroup$
          I'd have said "Let C be the modal system you get by adding to K all axioms of the form $alpha to DiamondBoxalpha$. Then how do we show $vdash_C Box p to Diamond p$, etc." [I've plucked the label "C" out of the air -- I don't know off-hand if there is a label already in use.]
          $endgroup$
          – Peter Smith
          Dec 14 '18 at 10:42


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038153%2fhow-to-prove-in-k-vdash-p-rightarrow-lozenge-square-p-square-p-righta%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten