“Following” $operatorname{exp}(lambda)$ random variables “sum” to $operatorname{Poi}(lambda t)$...
$begingroup$
Lifetime of a bulb is distributed $operatorname{exp}(lambda)$. When one light bulb is burned we replace it immidietely. Let $N_t$ be the number of bulbs we've used by time $t$. Prove that $N_t sim operatorname{Poi}(lambda t)$.
Where is the mistake in my solution?
For all $iin mathbb{N}$, let $X_i simoperatorname{exp}(lambda)$ be the lifetime of bulb #$i$. $(X_i)$ are independent.
$$
\ mathbb{P}(N_t=k)=mathbb{P}(t-1<X_1+...+X_kleq t)
\= dots = (tlambda)^{k-1}cdot e^{-lambda t} (e^{-lambda}-1)
$$
probability probability-distributions random-variables poisson-distribution exponential-distribution
$endgroup$
add a comment |
$begingroup$
Lifetime of a bulb is distributed $operatorname{exp}(lambda)$. When one light bulb is burned we replace it immidietely. Let $N_t$ be the number of bulbs we've used by time $t$. Prove that $N_t sim operatorname{Poi}(lambda t)$.
Where is the mistake in my solution?
For all $iin mathbb{N}$, let $X_i simoperatorname{exp}(lambda)$ be the lifetime of bulb #$i$. $(X_i)$ are independent.
$$
\ mathbb{P}(N_t=k)=mathbb{P}(t-1<X_1+...+X_kleq t)
\= dots = (tlambda)^{k-1}cdot e^{-lambda t} (e^{-lambda}-1)
$$
probability probability-distributions random-variables poisson-distribution exponential-distribution
$endgroup$
add a comment |
$begingroup$
Lifetime of a bulb is distributed $operatorname{exp}(lambda)$. When one light bulb is burned we replace it immidietely. Let $N_t$ be the number of bulbs we've used by time $t$. Prove that $N_t sim operatorname{Poi}(lambda t)$.
Where is the mistake in my solution?
For all $iin mathbb{N}$, let $X_i simoperatorname{exp}(lambda)$ be the lifetime of bulb #$i$. $(X_i)$ are independent.
$$
\ mathbb{P}(N_t=k)=mathbb{P}(t-1<X_1+...+X_kleq t)
\= dots = (tlambda)^{k-1}cdot e^{-lambda t} (e^{-lambda}-1)
$$
probability probability-distributions random-variables poisson-distribution exponential-distribution
$endgroup$
Lifetime of a bulb is distributed $operatorname{exp}(lambda)$. When one light bulb is burned we replace it immidietely. Let $N_t$ be the number of bulbs we've used by time $t$. Prove that $N_t sim operatorname{Poi}(lambda t)$.
Where is the mistake in my solution?
For all $iin mathbb{N}$, let $X_i simoperatorname{exp}(lambda)$ be the lifetime of bulb #$i$. $(X_i)$ are independent.
$$
\ mathbb{P}(N_t=k)=mathbb{P}(t-1<X_1+...+X_kleq t)
\= dots = (tlambda)^{k-1}cdot e^{-lambda t} (e^{-lambda}-1)
$$
probability probability-distributions random-variables poisson-distribution exponential-distribution
probability probability-distributions random-variables poisson-distribution exponential-distribution
edited Dec 14 '18 at 16:17
J. Doe
asked Dec 13 '18 at 14:50
J. DoeJ. Doe
16111
16111
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Mistakes:
1) In first line on RHS you use $n$ instead of $k$.
2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$
What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.
It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038104%2ffollowing-operatornameexp-lambda-random-variables-sum-to-operatorna%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Mistakes:
1) In first line on RHS you use $n$ instead of $k$.
2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$
What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.
It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$
$endgroup$
add a comment |
$begingroup$
Mistakes:
1) In first line on RHS you use $n$ instead of $k$.
2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$
What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.
It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$
$endgroup$
add a comment |
$begingroup$
Mistakes:
1) In first line on RHS you use $n$ instead of $k$.
2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$
What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.
It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$
$endgroup$
Mistakes:
1) In first line on RHS you use $n$ instead of $k$.
2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$
What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.
It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$
answered Dec 13 '18 at 15:07
drhabdrhab
102k545136
102k545136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038104%2ffollowing-operatornameexp-lambda-random-variables-sum-to-operatorna%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown