Looking for another way to calculate the integral $iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$












3












$begingroup$


Here, I have a little unpleasant way to calculate the following double integral



$$iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$$



where $D$ is the square area $D={(x,y)inmathbb{R}^2: 0 le x le pi/2, 0 le y le pi/2}$



my attempt:



with the symmetry of the area we know



$$I=iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=iint_{D}{sin(y)e^{sin(x)sin(y)}}text{d}A$$



thus



$$I=frac1{2}iint_{D}{(sin(x)+sin(y))e^{sin(x)sin(y)}}text{d}A$$



with the substitution $u=sin(x)$ and $v=sin(y)$, we have



$$I=frac1{2}iint_{D^{*}}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$



and now the integral area is $D^{*}={(u,v)inmathbb{R}^2: 0 le u le 1, 0 le v le 1}$



notice that the function $frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}$ also holds a symmetric form, thus



$$I=iint_{D^{*}cap(ule v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A=iint_{D^{*}cap(uge v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$



so I can only foucs on area $D^{*}cap(uge v)$, set another substitution



$$u+v=alpha$$



$$uv=beta$$



under the condition $uge v$, the determinant of Jacobian matrix writes



$$|J(alpha,beta)|=frac1{sqrt{alpha^2-4beta}}$$



and



$$frac1{sqrt{(1-u^2)(1-v^2)}}=frac1{sqrt{(1+beta)^2-alpha^2}}$$



the integral area change to ${(alpha,beta)inmathbb{R}^2: 2sqrt{beta} le alpha le 1+beta, 0 le beta le 1}$, so



$$begin{align}
I&=int_{0}^{1}int_{2sqrt{beta}}^{1+beta}{frac{alpha}{sqrt{((1+beta)^2-alpha^2)(alpha^2-4beta)}}e^{beta}}text{d}alpha text{d}beta
\&=int_{0}^{1}left(-tan^{-1}sqrt{frac{(1+beta)^2-alpha^2}{alpha^2-4beta}}right)biggr|_{alpha=2sqrt{beta}}^{1+beta} e^{beta}text{d}beta
\&=frac{pi}{2}(e-1)
end{align}$$



obviously, I choose an inconvenient way in the second half of this calculation, but I still can not come up with another good method.



thanks in advance for any suggestion!










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Here, I have a little unpleasant way to calculate the following double integral



    $$iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$$



    where $D$ is the square area $D={(x,y)inmathbb{R}^2: 0 le x le pi/2, 0 le y le pi/2}$



    my attempt:



    with the symmetry of the area we know



    $$I=iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=iint_{D}{sin(y)e^{sin(x)sin(y)}}text{d}A$$



    thus



    $$I=frac1{2}iint_{D}{(sin(x)+sin(y))e^{sin(x)sin(y)}}text{d}A$$



    with the substitution $u=sin(x)$ and $v=sin(y)$, we have



    $$I=frac1{2}iint_{D^{*}}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$



    and now the integral area is $D^{*}={(u,v)inmathbb{R}^2: 0 le u le 1, 0 le v le 1}$



    notice that the function $frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}$ also holds a symmetric form, thus



    $$I=iint_{D^{*}cap(ule v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A=iint_{D^{*}cap(uge v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$



    so I can only foucs on area $D^{*}cap(uge v)$, set another substitution



    $$u+v=alpha$$



    $$uv=beta$$



    under the condition $uge v$, the determinant of Jacobian matrix writes



    $$|J(alpha,beta)|=frac1{sqrt{alpha^2-4beta}}$$



    and



    $$frac1{sqrt{(1-u^2)(1-v^2)}}=frac1{sqrt{(1+beta)^2-alpha^2}}$$



    the integral area change to ${(alpha,beta)inmathbb{R}^2: 2sqrt{beta} le alpha le 1+beta, 0 le beta le 1}$, so



    $$begin{align}
    I&=int_{0}^{1}int_{2sqrt{beta}}^{1+beta}{frac{alpha}{sqrt{((1+beta)^2-alpha^2)(alpha^2-4beta)}}e^{beta}}text{d}alpha text{d}beta
    \&=int_{0}^{1}left(-tan^{-1}sqrt{frac{(1+beta)^2-alpha^2}{alpha^2-4beta}}right)biggr|_{alpha=2sqrt{beta}}^{1+beta} e^{beta}text{d}beta
    \&=frac{pi}{2}(e-1)
    end{align}$$



    obviously, I choose an inconvenient way in the second half of this calculation, but I still can not come up with another good method.



    thanks in advance for any suggestion!










    share|cite|improve this question









    $endgroup$















      3












      3








      3





      $begingroup$


      Here, I have a little unpleasant way to calculate the following double integral



      $$iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$$



      where $D$ is the square area $D={(x,y)inmathbb{R}^2: 0 le x le pi/2, 0 le y le pi/2}$



      my attempt:



      with the symmetry of the area we know



      $$I=iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=iint_{D}{sin(y)e^{sin(x)sin(y)}}text{d}A$$



      thus



      $$I=frac1{2}iint_{D}{(sin(x)+sin(y))e^{sin(x)sin(y)}}text{d}A$$



      with the substitution $u=sin(x)$ and $v=sin(y)$, we have



      $$I=frac1{2}iint_{D^{*}}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$



      and now the integral area is $D^{*}={(u,v)inmathbb{R}^2: 0 le u le 1, 0 le v le 1}$



      notice that the function $frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}$ also holds a symmetric form, thus



      $$I=iint_{D^{*}cap(ule v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A=iint_{D^{*}cap(uge v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$



      so I can only foucs on area $D^{*}cap(uge v)$, set another substitution



      $$u+v=alpha$$



      $$uv=beta$$



      under the condition $uge v$, the determinant of Jacobian matrix writes



      $$|J(alpha,beta)|=frac1{sqrt{alpha^2-4beta}}$$



      and



      $$frac1{sqrt{(1-u^2)(1-v^2)}}=frac1{sqrt{(1+beta)^2-alpha^2}}$$



      the integral area change to ${(alpha,beta)inmathbb{R}^2: 2sqrt{beta} le alpha le 1+beta, 0 le beta le 1}$, so



      $$begin{align}
      I&=int_{0}^{1}int_{2sqrt{beta}}^{1+beta}{frac{alpha}{sqrt{((1+beta)^2-alpha^2)(alpha^2-4beta)}}e^{beta}}text{d}alpha text{d}beta
      \&=int_{0}^{1}left(-tan^{-1}sqrt{frac{(1+beta)^2-alpha^2}{alpha^2-4beta}}right)biggr|_{alpha=2sqrt{beta}}^{1+beta} e^{beta}text{d}beta
      \&=frac{pi}{2}(e-1)
      end{align}$$



      obviously, I choose an inconvenient way in the second half of this calculation, but I still can not come up with another good method.



      thanks in advance for any suggestion!










      share|cite|improve this question









      $endgroup$




      Here, I have a little unpleasant way to calculate the following double integral



      $$iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$$



      where $D$ is the square area $D={(x,y)inmathbb{R}^2: 0 le x le pi/2, 0 le y le pi/2}$



      my attempt:



      with the symmetry of the area we know



      $$I=iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=iint_{D}{sin(y)e^{sin(x)sin(y)}}text{d}A$$



      thus



      $$I=frac1{2}iint_{D}{(sin(x)+sin(y))e^{sin(x)sin(y)}}text{d}A$$



      with the substitution $u=sin(x)$ and $v=sin(y)$, we have



      $$I=frac1{2}iint_{D^{*}}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$



      and now the integral area is $D^{*}={(u,v)inmathbb{R}^2: 0 le u le 1, 0 le v le 1}$



      notice that the function $frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}$ also holds a symmetric form, thus



      $$I=iint_{D^{*}cap(ule v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A=iint_{D^{*}cap(uge v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$



      so I can only foucs on area $D^{*}cap(uge v)$, set another substitution



      $$u+v=alpha$$



      $$uv=beta$$



      under the condition $uge v$, the determinant of Jacobian matrix writes



      $$|J(alpha,beta)|=frac1{sqrt{alpha^2-4beta}}$$



      and



      $$frac1{sqrt{(1-u^2)(1-v^2)}}=frac1{sqrt{(1+beta)^2-alpha^2}}$$



      the integral area change to ${(alpha,beta)inmathbb{R}^2: 2sqrt{beta} le alpha le 1+beta, 0 le beta le 1}$, so



      $$begin{align}
      I&=int_{0}^{1}int_{2sqrt{beta}}^{1+beta}{frac{alpha}{sqrt{((1+beta)^2-alpha^2)(alpha^2-4beta)}}e^{beta}}text{d}alpha text{d}beta
      \&=int_{0}^{1}left(-tan^{-1}sqrt{frac{(1+beta)^2-alpha^2}{alpha^2-4beta}}right)biggr|_{alpha=2sqrt{beta}}^{1+beta} e^{beta}text{d}beta
      \&=frac{pi}{2}(e-1)
      end{align}$$



      obviously, I choose an inconvenient way in the second half of this calculation, but I still can not come up with another good method.



      thanks in advance for any suggestion!







      calculus multivariable-calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 9 '18 at 14:57









      NanayajitzukiNanayajitzuki

      3185




      3185






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Using the Taylor expansion of the exponential
          $$
          iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
          $$

          where
          $$
          I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
          $$

          Therefore
          $$
          frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
          $$

          after simplifications, which then leads to
          $$
          sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
          $$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032466%2flooking-for-another-way-to-calculate-the-integral-iint-d-sinxe-sinx-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Using the Taylor expansion of the exponential
            $$
            iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
            $$

            where
            $$
            I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
            $$

            Therefore
            $$
            frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
            $$

            after simplifications, which then leads to
            $$
            sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
            $$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Using the Taylor expansion of the exponential
              $$
              iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
              $$

              where
              $$
              I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
              $$

              Therefore
              $$
              frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
              $$

              after simplifications, which then leads to
              $$
              sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
              $$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Using the Taylor expansion of the exponential
                $$
                iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
                $$

                where
                $$
                I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
                $$

                Therefore
                $$
                frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
                $$

                after simplifications, which then leads to
                $$
                sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
                $$






                share|cite|improve this answer









                $endgroup$



                Using the Taylor expansion of the exponential
                $$
                iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
                $$

                where
                $$
                I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
                $$

                Therefore
                $$
                frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
                $$

                after simplifications, which then leads to
                $$
                sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 24 '18 at 15:17









                Pierpaolo VivoPierpaolo Vivo

                5,3562724




                5,3562724






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032466%2flooking-for-another-way-to-calculate-the-integral-iint-d-sinxe-sinx-s%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten