Boundary value problems: eigenvalue and eigenfunction
$begingroup$
I'm having trouble in understanding eigenvalues and eigenfunctions in BvP
the problem is:
$y''$ + $lambda$$y$ = $0$
$y(0)=0$
$y(2pi)$ = $0$.
Make characteristic polynomial
$r^2 + lambda = 0$
$r_1,_2 = pm sqrt{- lambda}$
the general solution is :
$$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$$
Applying first boundary condition
$0=y(0)=c_1$
and applying the second boundary condition
$0=y(pi)=c_2 sinleft(2pisqrt{lambda}right)$.
I know the part how to solve BVP I just wanted to know how get
eigenvalue solution:
$$lambda_n = left(frac n2right)^2 = frac {n^2}{4},quad n=1,2,3...$$
and eigenfunction:
$$y_n= sin left(frac {nx}{2}right),quad n=1,2,3....$$
IF $lambda > 0$
ordinary-differential-equations eigenvalues-eigenvectors boundary-value-problem eigenfunctions
$endgroup$
add a comment |
$begingroup$
I'm having trouble in understanding eigenvalues and eigenfunctions in BvP
the problem is:
$y''$ + $lambda$$y$ = $0$
$y(0)=0$
$y(2pi)$ = $0$.
Make characteristic polynomial
$r^2 + lambda = 0$
$r_1,_2 = pm sqrt{- lambda}$
the general solution is :
$$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$$
Applying first boundary condition
$0=y(0)=c_1$
and applying the second boundary condition
$0=y(pi)=c_2 sinleft(2pisqrt{lambda}right)$.
I know the part how to solve BVP I just wanted to know how get
eigenvalue solution:
$$lambda_n = left(frac n2right)^2 = frac {n^2}{4},quad n=1,2,3...$$
and eigenfunction:
$$y_n= sin left(frac {nx}{2}right),quad n=1,2,3....$$
IF $lambda > 0$
ordinary-differential-equations eigenvalues-eigenvectors boundary-value-problem eigenfunctions
$endgroup$
add a comment |
$begingroup$
I'm having trouble in understanding eigenvalues and eigenfunctions in BvP
the problem is:
$y''$ + $lambda$$y$ = $0$
$y(0)=0$
$y(2pi)$ = $0$.
Make characteristic polynomial
$r^2 + lambda = 0$
$r_1,_2 = pm sqrt{- lambda}$
the general solution is :
$$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$$
Applying first boundary condition
$0=y(0)=c_1$
and applying the second boundary condition
$0=y(pi)=c_2 sinleft(2pisqrt{lambda}right)$.
I know the part how to solve BVP I just wanted to know how get
eigenvalue solution:
$$lambda_n = left(frac n2right)^2 = frac {n^2}{4},quad n=1,2,3...$$
and eigenfunction:
$$y_n= sin left(frac {nx}{2}right),quad n=1,2,3....$$
IF $lambda > 0$
ordinary-differential-equations eigenvalues-eigenvectors boundary-value-problem eigenfunctions
$endgroup$
I'm having trouble in understanding eigenvalues and eigenfunctions in BvP
the problem is:
$y''$ + $lambda$$y$ = $0$
$y(0)=0$
$y(2pi)$ = $0$.
Make characteristic polynomial
$r^2 + lambda = 0$
$r_1,_2 = pm sqrt{- lambda}$
the general solution is :
$$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$$
Applying first boundary condition
$0=y(0)=c_1$
and applying the second boundary condition
$0=y(pi)=c_2 sinleft(2pisqrt{lambda}right)$.
I know the part how to solve BVP I just wanted to know how get
eigenvalue solution:
$$lambda_n = left(frac n2right)^2 = frac {n^2}{4},quad n=1,2,3...$$
and eigenfunction:
$$y_n= sin left(frac {nx}{2}right),quad n=1,2,3....$$
IF $lambda > 0$
ordinary-differential-equations eigenvalues-eigenvectors boundary-value-problem eigenfunctions
ordinary-differential-equations eigenvalues-eigenvectors boundary-value-problem eigenfunctions
edited Jun 29 '16 at 12:00
Davide Giraudo
128k17154268
128k17154268
asked Jun 22 '16 at 8:09
clutchnicclutchnic
2416
2416
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As your said,
$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$
and $0=y(0)=c_1$.
The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$
Indeed, we require
begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}
consequently, we deduce
begin{align}
&sqrtlambda=frac{n}{2}\
&lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
end{align}
Thusbegin{align}
y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1835488%2fboundary-value-problems-eigenvalue-and-eigenfunction%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As your said,
$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$
and $0=y(0)=c_1$.
The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$
Indeed, we require
begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}
consequently, we deduce
begin{align}
&sqrtlambda=frac{n}{2}\
&lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
end{align}
Thusbegin{align}
y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}
$endgroup$
add a comment |
$begingroup$
As your said,
$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$
and $0=y(0)=c_1$.
The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$
Indeed, we require
begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}
consequently, we deduce
begin{align}
&sqrtlambda=frac{n}{2}\
&lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
end{align}
Thusbegin{align}
y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}
$endgroup$
add a comment |
$begingroup$
As your said,
$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$
and $0=y(0)=c_1$.
The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$
Indeed, we require
begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}
consequently, we deduce
begin{align}
&sqrtlambda=frac{n}{2}\
&lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
end{align}
Thusbegin{align}
y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}
$endgroup$
As your said,
$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$
and $0=y(0)=c_1$.
The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$
Indeed, we require
begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}
consequently, we deduce
begin{align}
&sqrtlambda=frac{n}{2}\
&lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
end{align}
Thusbegin{align}
y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}
answered Jan 30 '17 at 17:50
Canrong TianCanrong Tian
165
165
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1835488%2fboundary-value-problems-eigenvalue-and-eigenfunction%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown