Boundary value problems: eigenvalue and eigenfunction












2












$begingroup$


I'm having trouble in understanding eigenvalues and eigenfunctions in BvP



the problem is:



$y''$ + $lambda$$y$ = $0$



$y(0)=0$



$y(2pi)$ = $0$.



Make characteristic polynomial



$r^2 + lambda = 0$



$r_1,_2 = pm sqrt{- lambda}$



the general solution is :



$$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$$



Applying first boundary condition



$0=y(0)=c_1$



and applying the second boundary condition



$0=y(pi)=c_2 sinleft(2pisqrt{lambda}right)$.



I know the part how to solve BVP I just wanted to know how get



eigenvalue solution:
$$lambda_n = left(frac n2right)^2 = frac {n^2}{4},quad n=1,2,3...$$



and eigenfunction:



$$y_n= sin left(frac {nx}{2}right),quad n=1,2,3....$$



IF $lambda > 0$










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    I'm having trouble in understanding eigenvalues and eigenfunctions in BvP



    the problem is:



    $y''$ + $lambda$$y$ = $0$



    $y(0)=0$



    $y(2pi)$ = $0$.



    Make characteristic polynomial



    $r^2 + lambda = 0$



    $r_1,_2 = pm sqrt{- lambda}$



    the general solution is :



    $$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$$



    Applying first boundary condition



    $0=y(0)=c_1$



    and applying the second boundary condition



    $0=y(pi)=c_2 sinleft(2pisqrt{lambda}right)$.



    I know the part how to solve BVP I just wanted to know how get



    eigenvalue solution:
    $$lambda_n = left(frac n2right)^2 = frac {n^2}{4},quad n=1,2,3...$$



    and eigenfunction:



    $$y_n= sin left(frac {nx}{2}right),quad n=1,2,3....$$



    IF $lambda > 0$










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      1



      $begingroup$


      I'm having trouble in understanding eigenvalues and eigenfunctions in BvP



      the problem is:



      $y''$ + $lambda$$y$ = $0$



      $y(0)=0$



      $y(2pi)$ = $0$.



      Make characteristic polynomial



      $r^2 + lambda = 0$



      $r_1,_2 = pm sqrt{- lambda}$



      the general solution is :



      $$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$$



      Applying first boundary condition



      $0=y(0)=c_1$



      and applying the second boundary condition



      $0=y(pi)=c_2 sinleft(2pisqrt{lambda}right)$.



      I know the part how to solve BVP I just wanted to know how get



      eigenvalue solution:
      $$lambda_n = left(frac n2right)^2 = frac {n^2}{4},quad n=1,2,3...$$



      and eigenfunction:



      $$y_n= sin left(frac {nx}{2}right),quad n=1,2,3....$$



      IF $lambda > 0$










      share|cite|improve this question











      $endgroup$




      I'm having trouble in understanding eigenvalues and eigenfunctions in BvP



      the problem is:



      $y''$ + $lambda$$y$ = $0$



      $y(0)=0$



      $y(2pi)$ = $0$.



      Make characteristic polynomial



      $r^2 + lambda = 0$



      $r_1,_2 = pm sqrt{- lambda}$



      the general solution is :



      $$y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$$



      Applying first boundary condition



      $0=y(0)=c_1$



      and applying the second boundary condition



      $0=y(pi)=c_2 sinleft(2pisqrt{lambda}right)$.



      I know the part how to solve BVP I just wanted to know how get



      eigenvalue solution:
      $$lambda_n = left(frac n2right)^2 = frac {n^2}{4},quad n=1,2,3...$$



      and eigenfunction:



      $$y_n= sin left(frac {nx}{2}right),quad n=1,2,3....$$



      IF $lambda > 0$







      ordinary-differential-equations eigenvalues-eigenvectors boundary-value-problem eigenfunctions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jun 29 '16 at 12:00









      Davide Giraudo

      128k17154268




      128k17154268










      asked Jun 22 '16 at 8:09









      clutchnicclutchnic

      2416




      2416






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          As your said,



          $y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$



          and $0=y(0)=c_1$.



          The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$



          Indeed, we require



          begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}



          consequently, we deduce

          begin{align}
          &sqrtlambda=frac{n}{2}\
          &lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
          end{align}
          Thusbegin{align}
          y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1835488%2fboundary-value-problems-eigenvalue-and-eigenfunction%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            As your said,



            $y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$



            and $0=y(0)=c_1$.



            The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$



            Indeed, we require



            begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}



            consequently, we deduce

            begin{align}
            &sqrtlambda=frac{n}{2}\
            &lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
            end{align}
            Thusbegin{align}
            y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              As your said,



              $y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$



              and $0=y(0)=c_1$.



              The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$



              Indeed, we require



              begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}



              consequently, we deduce

              begin{align}
              &sqrtlambda=frac{n}{2}\
              &lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
              end{align}
              Thusbegin{align}
              y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                As your said,



                $y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$



                and $0=y(0)=c_1$.



                The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$



                Indeed, we require



                begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}



                consequently, we deduce

                begin{align}
                &sqrtlambda=frac{n}{2}\
                &lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
                end{align}
                Thusbegin{align}
                y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}






                share|cite|improve this answer









                $endgroup$



                As your said,



                $y(x) = c_1 cosleft(sqrt{lambda}xright) + c_2 sinleft(sqrt{lambda}xright).$



                and $0=y(0)=c_1$.



                The key step is how to solve $0=y(2pi)=c_2 sinleft(2pisqrt{lambda}right)$



                Indeed, we require



                begin{align}2pisqrt{lambda}=npi, mbox{ where } n=1,2,cdotsend{align}



                consequently, we deduce

                begin{align}
                &sqrtlambda=frac{n}{2}\
                &lambda=left(frac{n}{2}right) ^2=frac{n^2}{4},mbox{ where } n=1,2,cdots
                end{align}
                Thusbegin{align}
                y_n= sin left(frac {nx}{2}right),quad n=1,2,....end{align}







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 30 '17 at 17:50









                Canrong TianCanrong Tian

                165




                165






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1835488%2fboundary-value-problems-eigenvalue-and-eigenfunction%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten