I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$












5














I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$



It was an exercise from a book about complex analysis, so I've gone through the complex plane to do it!



Consider a semi-circle where |z|=R and $0<arg(z)<pi$.



consider another, the exact same definition but swap R for $epsilon$, I want to integrate from -R to $-epsilon$ over the semi-circle that starts at $-epsilon$ to $epsilon$ then along the straight line to R, then from R anti-clockwise back to -R.



I've been given the hint that the integral in the anticlockwise direction is zero, but the clockwise direction (for the $epsilon$) is -j$pi$



Here's the problem, my function is: $f(z)=frac{e^{jz}}{z}$



I've established that f(z)dz = $je^{jz}$ but no amount of playing around has made this expression tolerable.



Because I am considering the integral from 0 to infinity, if I can bound it above somehow by zero I can "sandwich" it between 0 and something that tends to zero.



So far no luck.










share|cite|improve this question



























    5














    I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$



    It was an exercise from a book about complex analysis, so I've gone through the complex plane to do it!



    Consider a semi-circle where |z|=R and $0<arg(z)<pi$.



    consider another, the exact same definition but swap R for $epsilon$, I want to integrate from -R to $-epsilon$ over the semi-circle that starts at $-epsilon$ to $epsilon$ then along the straight line to R, then from R anti-clockwise back to -R.



    I've been given the hint that the integral in the anticlockwise direction is zero, but the clockwise direction (for the $epsilon$) is -j$pi$



    Here's the problem, my function is: $f(z)=frac{e^{jz}}{z}$



    I've established that f(z)dz = $je^{jz}$ but no amount of playing around has made this expression tolerable.



    Because I am considering the integral from 0 to infinity, if I can bound it above somehow by zero I can "sandwich" it between 0 and something that tends to zero.



    So far no luck.










    share|cite|improve this question

























      5












      5








      5


      1





      I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$



      It was an exercise from a book about complex analysis, so I've gone through the complex plane to do it!



      Consider a semi-circle where |z|=R and $0<arg(z)<pi$.



      consider another, the exact same definition but swap R for $epsilon$, I want to integrate from -R to $-epsilon$ over the semi-circle that starts at $-epsilon$ to $epsilon$ then along the straight line to R, then from R anti-clockwise back to -R.



      I've been given the hint that the integral in the anticlockwise direction is zero, but the clockwise direction (for the $epsilon$) is -j$pi$



      Here's the problem, my function is: $f(z)=frac{e^{jz}}{z}$



      I've established that f(z)dz = $je^{jz}$ but no amount of playing around has made this expression tolerable.



      Because I am considering the integral from 0 to infinity, if I can bound it above somehow by zero I can "sandwich" it between 0 and something that tends to zero.



      So far no luck.










      share|cite|improve this question













      I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$



      It was an exercise from a book about complex analysis, so I've gone through the complex plane to do it!



      Consider a semi-circle where |z|=R and $0<arg(z)<pi$.



      consider another, the exact same definition but swap R for $epsilon$, I want to integrate from -R to $-epsilon$ over the semi-circle that starts at $-epsilon$ to $epsilon$ then along the straight line to R, then from R anti-clockwise back to -R.



      I've been given the hint that the integral in the anticlockwise direction is zero, but the clockwise direction (for the $epsilon$) is -j$pi$



      Here's the problem, my function is: $f(z)=frac{e^{jz}}{z}$



      I've established that f(z)dz = $je^{jz}$ but no amount of playing around has made this expression tolerable.



      Because I am considering the integral from 0 to infinity, if I can bound it above somehow by zero I can "sandwich" it between 0 and something that tends to zero.



      So far no luck.







      complex-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 2 '13 at 5:12









      Alec Teal

      3,51011944




      3,51011944






















          4 Answers
          4






          active

          oldest

          votes


















          3














          $newcommand{+}{^{dagger}}%
          newcommand{angles}[1]{leftlangle #1 rightrangle}%
          newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
          newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
          newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
          newcommand{dd}{{rm d}}%
          newcommand{ds}[1]{displaystyle{#1}}%
          newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
          newcommand{expo}[1]{,{rm e}^{#1},}%
          newcommand{fermi}{,{rm f}}%
          newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
          newcommand{half}{{1 over 2}}%
          newcommand{ic}{{rm i}}%
          newcommand{iff}{Longleftrightarrow}
          newcommand{imp}{Longrightarrow}%
          newcommand{isdiv}{,left.rightvert,}%
          newcommand{ket}[1]{leftvert #1rightrangle}%
          newcommand{ol}[1]{overline{#1}}%
          newcommand{pars}[1]{left( #1 right)}%
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{pp}{{cal P}}%
          newcommand{root}[2]{,sqrt[#1]{,#2,},}%
          newcommand{sech}{,{rm sech}}%
          newcommand{sgn}{,{rm sgn}}%
          newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
          newcommand{ul}[1]{underline{#1}}%
          newcommand{verts}[1]{leftvert, #1 ,rightvert}$





          1. begin{align}color{#0000ff}{large%
            int_{-infty}^{infty}{sinpars{x} over x},dd x}
            &=
            int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
            \[5mm] & =
            piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
            ,dd k
            =
            piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
            end{align}



          2. begin{align}
            0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
            +
            int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
            epsilonexpo{ictheta}ic,ddtheta
            +
            int_{epsilon}^{R}{expo{ic x} over x},dd x
            +
            int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
            Rexpo{ictheta}ic,ddtheta
            end{align}

            With the limit $epsilon to 0^{+}$:
            begin{align}
            0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
            +
            int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
            -
            icpi
            \[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
            \[3mm]&=
            -2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
            +
            icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
            \[5mm]
            color{#0000ff}{large%
            int_{0}^{infty}{sinpars{x} over x},dd x} &=
            color{#0000ff}{large{pi over 2}}
            +
            {1 over 2}overbrace{lim_{R to infty}
            int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
            ^{ds{= 0}}
            end{align}







          share|cite|improve this answer































            2














            Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$



            We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)



            Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$






            share|cite|improve this answer





























              2














              Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).



              Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.



              Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.



              Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
              $$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$



              It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.



              Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.






              share|cite|improve this answer





























                1














                Since the integrand is even function, then you can consider



                $$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$






                share|cite|improve this answer

















                • 1




                  I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
                  – Mr.Fry
                  Dec 2 '13 at 5:37













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f589158%2fi-am-trying-to-show-int-infty-0-frac-sinxxdx-frac-pi2%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                3














                $newcommand{+}{^{dagger}}%
                newcommand{angles}[1]{leftlangle #1 rightrangle}%
                newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
                newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
                newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
                newcommand{dd}{{rm d}}%
                newcommand{ds}[1]{displaystyle{#1}}%
                newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
                newcommand{expo}[1]{,{rm e}^{#1},}%
                newcommand{fermi}{,{rm f}}%
                newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
                newcommand{half}{{1 over 2}}%
                newcommand{ic}{{rm i}}%
                newcommand{iff}{Longleftrightarrow}
                newcommand{imp}{Longrightarrow}%
                newcommand{isdiv}{,left.rightvert,}%
                newcommand{ket}[1]{leftvert #1rightrangle}%
                newcommand{ol}[1]{overline{#1}}%
                newcommand{pars}[1]{left( #1 right)}%
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{pp}{{cal P}}%
                newcommand{root}[2]{,sqrt[#1]{,#2,},}%
                newcommand{sech}{,{rm sech}}%
                newcommand{sgn}{,{rm sgn}}%
                newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                newcommand{ul}[1]{underline{#1}}%
                newcommand{verts}[1]{leftvert, #1 ,rightvert}$





                1. begin{align}color{#0000ff}{large%
                  int_{-infty}^{infty}{sinpars{x} over x},dd x}
                  &=
                  int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
                  \[5mm] & =
                  piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
                  ,dd k
                  =
                  piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
                  end{align}



                2. begin{align}
                  0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
                  +
                  int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
                  epsilonexpo{ictheta}ic,ddtheta
                  +
                  int_{epsilon}^{R}{expo{ic x} over x},dd x
                  +
                  int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
                  Rexpo{ictheta}ic,ddtheta
                  end{align}

                  With the limit $epsilon to 0^{+}$:
                  begin{align}
                  0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
                  +
                  int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
                  -
                  icpi
                  \[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
                  \[3mm]&=
                  -2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
                  +
                  icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
                  \[5mm]
                  color{#0000ff}{large%
                  int_{0}^{infty}{sinpars{x} over x},dd x} &=
                  color{#0000ff}{large{pi over 2}}
                  +
                  {1 over 2}overbrace{lim_{R to infty}
                  int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
                  ^{ds{= 0}}
                  end{align}







                share|cite|improve this answer




























                  3














                  $newcommand{+}{^{dagger}}%
                  newcommand{angles}[1]{leftlangle #1 rightrangle}%
                  newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
                  newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
                  newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
                  newcommand{dd}{{rm d}}%
                  newcommand{ds}[1]{displaystyle{#1}}%
                  newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
                  newcommand{expo}[1]{,{rm e}^{#1},}%
                  newcommand{fermi}{,{rm f}}%
                  newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
                  newcommand{half}{{1 over 2}}%
                  newcommand{ic}{{rm i}}%
                  newcommand{iff}{Longleftrightarrow}
                  newcommand{imp}{Longrightarrow}%
                  newcommand{isdiv}{,left.rightvert,}%
                  newcommand{ket}[1]{leftvert #1rightrangle}%
                  newcommand{ol}[1]{overline{#1}}%
                  newcommand{pars}[1]{left( #1 right)}%
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{pp}{{cal P}}%
                  newcommand{root}[2]{,sqrt[#1]{,#2,},}%
                  newcommand{sech}{,{rm sech}}%
                  newcommand{sgn}{,{rm sgn}}%
                  newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                  newcommand{ul}[1]{underline{#1}}%
                  newcommand{verts}[1]{leftvert, #1 ,rightvert}$





                  1. begin{align}color{#0000ff}{large%
                    int_{-infty}^{infty}{sinpars{x} over x},dd x}
                    &=
                    int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
                    \[5mm] & =
                    piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
                    ,dd k
                    =
                    piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
                    end{align}



                  2. begin{align}
                    0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
                    +
                    int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
                    epsilonexpo{ictheta}ic,ddtheta
                    +
                    int_{epsilon}^{R}{expo{ic x} over x},dd x
                    +
                    int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
                    Rexpo{ictheta}ic,ddtheta
                    end{align}

                    With the limit $epsilon to 0^{+}$:
                    begin{align}
                    0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
                    +
                    int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
                    -
                    icpi
                    \[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
                    \[3mm]&=
                    -2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
                    +
                    icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
                    \[5mm]
                    color{#0000ff}{large%
                    int_{0}^{infty}{sinpars{x} over x},dd x} &=
                    color{#0000ff}{large{pi over 2}}
                    +
                    {1 over 2}overbrace{lim_{R to infty}
                    int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
                    ^{ds{= 0}}
                    end{align}







                  share|cite|improve this answer


























                    3












                    3








                    3






                    $newcommand{+}{^{dagger}}%
                    newcommand{angles}[1]{leftlangle #1 rightrangle}%
                    newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
                    newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
                    newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
                    newcommand{dd}{{rm d}}%
                    newcommand{ds}[1]{displaystyle{#1}}%
                    newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
                    newcommand{expo}[1]{,{rm e}^{#1},}%
                    newcommand{fermi}{,{rm f}}%
                    newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
                    newcommand{half}{{1 over 2}}%
                    newcommand{ic}{{rm i}}%
                    newcommand{iff}{Longleftrightarrow}
                    newcommand{imp}{Longrightarrow}%
                    newcommand{isdiv}{,left.rightvert,}%
                    newcommand{ket}[1]{leftvert #1rightrangle}%
                    newcommand{ol}[1]{overline{#1}}%
                    newcommand{pars}[1]{left( #1 right)}%
                    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                    newcommand{pp}{{cal P}}%
                    newcommand{root}[2]{,sqrt[#1]{,#2,},}%
                    newcommand{sech}{,{rm sech}}%
                    newcommand{sgn}{,{rm sgn}}%
                    newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                    newcommand{ul}[1]{underline{#1}}%
                    newcommand{verts}[1]{leftvert, #1 ,rightvert}$





                    1. begin{align}color{#0000ff}{large%
                      int_{-infty}^{infty}{sinpars{x} over x},dd x}
                      &=
                      int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
                      \[5mm] & =
                      piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
                      ,dd k
                      =
                      piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
                      end{align}



                    2. begin{align}
                      0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
                      +
                      int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
                      epsilonexpo{ictheta}ic,ddtheta
                      +
                      int_{epsilon}^{R}{expo{ic x} over x},dd x
                      +
                      int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
                      Rexpo{ictheta}ic,ddtheta
                      end{align}

                      With the limit $epsilon to 0^{+}$:
                      begin{align}
                      0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
                      +
                      int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
                      -
                      icpi
                      \[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
                      \[3mm]&=
                      -2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
                      +
                      icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
                      \[5mm]
                      color{#0000ff}{large%
                      int_{0}^{infty}{sinpars{x} over x},dd x} &=
                      color{#0000ff}{large{pi over 2}}
                      +
                      {1 over 2}overbrace{lim_{R to infty}
                      int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
                      ^{ds{= 0}}
                      end{align}







                    share|cite|improve this answer














                    $newcommand{+}{^{dagger}}%
                    newcommand{angles}[1]{leftlangle #1 rightrangle}%
                    newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
                    newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
                    newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
                    newcommand{dd}{{rm d}}%
                    newcommand{ds}[1]{displaystyle{#1}}%
                    newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
                    newcommand{expo}[1]{,{rm e}^{#1},}%
                    newcommand{fermi}{,{rm f}}%
                    newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
                    newcommand{half}{{1 over 2}}%
                    newcommand{ic}{{rm i}}%
                    newcommand{iff}{Longleftrightarrow}
                    newcommand{imp}{Longrightarrow}%
                    newcommand{isdiv}{,left.rightvert,}%
                    newcommand{ket}[1]{leftvert #1rightrangle}%
                    newcommand{ol}[1]{overline{#1}}%
                    newcommand{pars}[1]{left( #1 right)}%
                    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                    newcommand{pp}{{cal P}}%
                    newcommand{root}[2]{,sqrt[#1]{,#2,},}%
                    newcommand{sech}{,{rm sech}}%
                    newcommand{sgn}{,{rm sgn}}%
                    newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                    newcommand{ul}[1]{underline{#1}}%
                    newcommand{verts}[1]{leftvert, #1 ,rightvert}$





                    1. begin{align}color{#0000ff}{large%
                      int_{-infty}^{infty}{sinpars{x} over x},dd x}
                      &=
                      int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
                      \[5mm] & =
                      piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
                      ,dd k
                      =
                      piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
                      end{align}



                    2. begin{align}
                      0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
                      +
                      int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
                      epsilonexpo{ictheta}ic,ddtheta
                      +
                      int_{epsilon}^{R}{expo{ic x} over x},dd x
                      +
                      int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
                      Rexpo{ictheta}ic,ddtheta
                      end{align}

                      With the limit $epsilon to 0^{+}$:
                      begin{align}
                      0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
                      +
                      int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
                      -
                      icpi
                      \[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
                      \[3mm]&=
                      -2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
                      +
                      icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
                      \[5mm]
                      color{#0000ff}{large%
                      int_{0}^{infty}{sinpars{x} over x},dd x} &=
                      color{#0000ff}{large{pi over 2}}
                      +
                      {1 over 2}overbrace{lim_{R to infty}
                      int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
                      ^{ds{= 0}}
                      end{align}








                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Nov 27 '18 at 15:09

























                    answered Dec 2 '13 at 5:21









                    Felix Marin

                    67.1k7107141




                    67.1k7107141























                        2














                        Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$



                        We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)



                        Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$






                        share|cite|improve this answer


























                          2














                          Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$



                          We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)



                          Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$






                          share|cite|improve this answer
























                            2












                            2








                            2






                            Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$



                            We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)



                            Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$






                            share|cite|improve this answer












                            Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$



                            We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)



                            Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 2 '13 at 5:34









                            Mr.Fry

                            3,88021223




                            3,88021223























                                2














                                Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).



                                Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.



                                Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.



                                Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
                                $$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$



                                It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.



                                Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.






                                share|cite|improve this answer


























                                  2














                                  Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).



                                  Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.



                                  Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.



                                  Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
                                  $$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$



                                  It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.



                                  Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.






                                  share|cite|improve this answer
























                                    2












                                    2








                                    2






                                    Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).



                                    Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.



                                    Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.



                                    Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
                                    $$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$



                                    It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.



                                    Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.






                                    share|cite|improve this answer












                                    Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).



                                    Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.



                                    Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.



                                    Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
                                    $$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$



                                    It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.



                                    Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Dec 2 '13 at 6:00









                                    Andrés E. Caicedo

                                    64.7k8158246




                                    64.7k8158246























                                        1














                                        Since the integrand is even function, then you can consider



                                        $$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$






                                        share|cite|improve this answer

















                                        • 1




                                          I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
                                          – Mr.Fry
                                          Dec 2 '13 at 5:37


















                                        1














                                        Since the integrand is even function, then you can consider



                                        $$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$






                                        share|cite|improve this answer

















                                        • 1




                                          I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
                                          – Mr.Fry
                                          Dec 2 '13 at 5:37
















                                        1












                                        1








                                        1






                                        Since the integrand is even function, then you can consider



                                        $$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$






                                        share|cite|improve this answer












                                        Since the integrand is even function, then you can consider



                                        $$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Dec 2 '13 at 5:18









                                        Mhenni Benghorbal

                                        43.1k63574




                                        43.1k63574








                                        • 1




                                          I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
                                          – Mr.Fry
                                          Dec 2 '13 at 5:37
















                                        • 1




                                          I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
                                          – Mr.Fry
                                          Dec 2 '13 at 5:37










                                        1




                                        1




                                        I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
                                        – Mr.Fry
                                        Dec 2 '13 at 5:37






                                        I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
                                        – Mr.Fry
                                        Dec 2 '13 at 5:37




















                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.





                                        Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                        Please pay close attention to the following guidance:


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f589158%2fi-am-trying-to-show-int-infty-0-frac-sinxxdx-frac-pi2%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Bundesstraße 106

                                        Verónica Boquete

                                        Ida-Boy-Ed-Garten