I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$
I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$
It was an exercise from a book about complex analysis, so I've gone through the complex plane to do it!
Consider a semi-circle where |z|=R and $0<arg(z)<pi$.
consider another, the exact same definition but swap R for $epsilon$, I want to integrate from -R to $-epsilon$ over the semi-circle that starts at $-epsilon$ to $epsilon$ then along the straight line to R, then from R anti-clockwise back to -R.
I've been given the hint that the integral in the anticlockwise direction is zero, but the clockwise direction (for the $epsilon$) is -j$pi$
Here's the problem, my function is: $f(z)=frac{e^{jz}}{z}$
I've established that f(z)dz = $je^{jz}$ but no amount of playing around has made this expression tolerable.
Because I am considering the integral from 0 to infinity, if I can bound it above somehow by zero I can "sandwich" it between 0 and something that tends to zero.
So far no luck.
complex-analysis
add a comment |
I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$
It was an exercise from a book about complex analysis, so I've gone through the complex plane to do it!
Consider a semi-circle where |z|=R and $0<arg(z)<pi$.
consider another, the exact same definition but swap R for $epsilon$, I want to integrate from -R to $-epsilon$ over the semi-circle that starts at $-epsilon$ to $epsilon$ then along the straight line to R, then from R anti-clockwise back to -R.
I've been given the hint that the integral in the anticlockwise direction is zero, but the clockwise direction (for the $epsilon$) is -j$pi$
Here's the problem, my function is: $f(z)=frac{e^{jz}}{z}$
I've established that f(z)dz = $je^{jz}$ but no amount of playing around has made this expression tolerable.
Because I am considering the integral from 0 to infinity, if I can bound it above somehow by zero I can "sandwich" it between 0 and something that tends to zero.
So far no luck.
complex-analysis
add a comment |
I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$
It was an exercise from a book about complex analysis, so I've gone through the complex plane to do it!
Consider a semi-circle where |z|=R and $0<arg(z)<pi$.
consider another, the exact same definition but swap R for $epsilon$, I want to integrate from -R to $-epsilon$ over the semi-circle that starts at $-epsilon$ to $epsilon$ then along the straight line to R, then from R anti-clockwise back to -R.
I've been given the hint that the integral in the anticlockwise direction is zero, but the clockwise direction (for the $epsilon$) is -j$pi$
Here's the problem, my function is: $f(z)=frac{e^{jz}}{z}$
I've established that f(z)dz = $je^{jz}$ but no amount of playing around has made this expression tolerable.
Because I am considering the integral from 0 to infinity, if I can bound it above somehow by zero I can "sandwich" it between 0 and something that tends to zero.
So far no luck.
complex-analysis
I am trying to show $int^infty_0frac{sin(x)}{x}dx=frac{pi}{2}$
It was an exercise from a book about complex analysis, so I've gone through the complex plane to do it!
Consider a semi-circle where |z|=R and $0<arg(z)<pi$.
consider another, the exact same definition but swap R for $epsilon$, I want to integrate from -R to $-epsilon$ over the semi-circle that starts at $-epsilon$ to $epsilon$ then along the straight line to R, then from R anti-clockwise back to -R.
I've been given the hint that the integral in the anticlockwise direction is zero, but the clockwise direction (for the $epsilon$) is -j$pi$
Here's the problem, my function is: $f(z)=frac{e^{jz}}{z}$
I've established that f(z)dz = $je^{jz}$ but no amount of playing around has made this expression tolerable.
Because I am considering the integral from 0 to infinity, if I can bound it above somehow by zero I can "sandwich" it between 0 and something that tends to zero.
So far no luck.
complex-analysis
complex-analysis
asked Dec 2 '13 at 5:12
Alec Teal
3,51011944
3,51011944
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}color{#0000ff}{large%
int_{-infty}^{infty}{sinpars{x} over x},dd x}
&=
int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
\[5mm] & =
piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
,dd k
=
piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
end{align}
begin{align}
0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
epsilonexpo{ictheta}ic,ddtheta
+
int_{epsilon}^{R}{expo{ic x} over x},dd x
+
int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
Rexpo{ictheta}ic,ddtheta
end{align}
With the limit $epsilon to 0^{+}$:
begin{align}
0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
-
icpi
\[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[3mm]&=
-2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
+
icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[5mm]
color{#0000ff}{large%
int_{0}^{infty}{sinpars{x} over x},dd x} &=
color{#0000ff}{large{pi over 2}}
+
{1 over 2}overbrace{lim_{R to infty}
int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
^{ds{= 0}}
end{align}
add a comment |
Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$
We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)
Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$
add a comment |
Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).
Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.
Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.
Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
$$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$
It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.
Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.
add a comment |
Since the integrand is even function, then you can consider
$$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$
1
I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
– Mr.Fry
Dec 2 '13 at 5:37
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f589158%2fi-am-trying-to-show-int-infty-0-frac-sinxxdx-frac-pi2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}color{#0000ff}{large%
int_{-infty}^{infty}{sinpars{x} over x},dd x}
&=
int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
\[5mm] & =
piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
,dd k
=
piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
end{align}
begin{align}
0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
epsilonexpo{ictheta}ic,ddtheta
+
int_{epsilon}^{R}{expo{ic x} over x},dd x
+
int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
Rexpo{ictheta}ic,ddtheta
end{align}
With the limit $epsilon to 0^{+}$:
begin{align}
0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
-
icpi
\[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[3mm]&=
-2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
+
icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[5mm]
color{#0000ff}{large%
int_{0}^{infty}{sinpars{x} over x},dd x} &=
color{#0000ff}{large{pi over 2}}
+
{1 over 2}overbrace{lim_{R to infty}
int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
^{ds{= 0}}
end{align}
add a comment |
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}color{#0000ff}{large%
int_{-infty}^{infty}{sinpars{x} over x},dd x}
&=
int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
\[5mm] & =
piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
,dd k
=
piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
end{align}
begin{align}
0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
epsilonexpo{ictheta}ic,ddtheta
+
int_{epsilon}^{R}{expo{ic x} over x},dd x
+
int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
Rexpo{ictheta}ic,ddtheta
end{align}
With the limit $epsilon to 0^{+}$:
begin{align}
0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
-
icpi
\[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[3mm]&=
-2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
+
icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[5mm]
color{#0000ff}{large%
int_{0}^{infty}{sinpars{x} over x},dd x} &=
color{#0000ff}{large{pi over 2}}
+
{1 over 2}overbrace{lim_{R to infty}
int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
^{ds{= 0}}
end{align}
add a comment |
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}color{#0000ff}{large%
int_{-infty}^{infty}{sinpars{x} over x},dd x}
&=
int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
\[5mm] & =
piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
,dd k
=
piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
end{align}
begin{align}
0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
epsilonexpo{ictheta}ic,ddtheta
+
int_{epsilon}^{R}{expo{ic x} over x},dd x
+
int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
Rexpo{ictheta}ic,ddtheta
end{align}
With the limit $epsilon to 0^{+}$:
begin{align}
0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
-
icpi
\[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[3mm]&=
-2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
+
icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[5mm]
color{#0000ff}{large%
int_{0}^{infty}{sinpars{x} over x},dd x} &=
color{#0000ff}{large{pi over 2}}
+
{1 over 2}overbrace{lim_{R to infty}
int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
^{ds{= 0}}
end{align}
$newcommand{+}{^{dagger}}%
newcommand{angles}[1]{leftlangle #1 rightrangle}%
newcommand{braces}[1]{leftlbrace #1 rightrbrace}%
newcommand{bracks}[1]{leftlbrack #1 rightrbrack}%
newcommand{ceil}[1]{,leftlceil #1 rightrceil,}%
newcommand{dd}{{rm d}}%
newcommand{ds}[1]{displaystyle{#1}}%
newcommand{equalby}[1]{{#1 atop {= atop vphantom{huge A}}}}%
newcommand{expo}[1]{,{rm e}^{#1},}%
newcommand{fermi}{,{rm f}}%
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}%
newcommand{half}{{1 over 2}}%
newcommand{ic}{{rm i}}%
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}%
newcommand{isdiv}{,left.rightvert,}%
newcommand{ket}[1]{leftvert #1rightrangle}%
newcommand{ol}[1]{overline{#1}}%
newcommand{pars}[1]{left( #1 right)}%
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}%
newcommand{root}[2]{,sqrt[#1]{,#2,},}%
newcommand{sech}{,{rm sech}}%
newcommand{sgn}{,{rm sgn}}%
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}%
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}color{#0000ff}{large%
int_{-infty}^{infty}{sinpars{x} over x},dd x}
&=
int_{-infty}^{infty}pars{halfint_{-1}^{1}expo{ic k x},dd k},dd x
\[5mm] & =
piint_{-1}^{1}pars{int_{-infty}^{infty}expo{ic k x},{dd x over 2pi}}
,dd k
=
piint_{-1}^{1}deltapars{k} = color{#0000ff}{Largepi}
end{align}
begin{align}
0& =int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{pi}^{0}{expo{icepsilonexpo{ictheta}} over epsilonexpo{ictheta}},
epsilonexpo{ictheta}ic,ddtheta
+
int_{epsilon}^{R}{expo{ic x} over x},dd x
+
int_{0}^{pi}{expo{ic Rexpo{ictheta}} over Rexpo{ictheta}},
Rexpo{ictheta}ic,ddtheta
end{align}
With the limit $epsilon to 0^{+}$:
begin{align}
0& =lim_{epsilon to 0^{+}}pars{int_{-R}^{-epsilon}{expo{ic x} over x},dd x
+
int_{-epsilon}^{-R}{expo{-ic x} over x},dd x}
-
icpi
\[2mm] & + icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[3mm]&=
-2icint_{0}^{R}{sinpars{x} over x},dd x -icpi
+
icint_{0}^{pi}expo{ic Rexpo{ictheta}},ddtheta
\[5mm]
color{#0000ff}{large%
int_{0}^{infty}{sinpars{x} over x},dd x} &=
color{#0000ff}{large{pi over 2}}
+
{1 over 2}overbrace{lim_{R to infty}
int_{0}^{pi}expo{ic Rcospars{theta}}expo{-Rsinpars{theta}},ddtheta}
^{ds{= 0}}
end{align}
edited Nov 27 '18 at 15:09
answered Dec 2 '13 at 5:21
Felix Marin
67.1k7107141
67.1k7107141
add a comment |
add a comment |
Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$
We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)
Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$
add a comment |
Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$
We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)
Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$
add a comment |
Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$
We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)
Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$
Lastly using the hint above, we finish by saying, $int_{-infty}^{infty}frac{e^iz}{z-0}dz=Im(2ipi(Res_{z=0}f(z)))=Im(2ipi(e^{iz}|_{z=0})) = Im(2ipi*1)= 2pi Rightarrow int_{0}^{infty}frac{e^iz}{z-0}dz=pi$
We want imaginary since we are looking at $sin$. I skipped some detail but I leave it to you to fill in the rest. :)
Specifically: Jordan's lemma to deduce $int_{c_R}frac{e^{iz}}{z} dz = 0$
answered Dec 2 '13 at 5:34
Mr.Fry
3,88021223
3,88021223
add a comment |
add a comment |
Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).
Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.
Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.
Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
$$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$
It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.
Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.
add a comment |
Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).
Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.
Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.
Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
$$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$
It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.
Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.
add a comment |
Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).
Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.
Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.
Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
$$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$
It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.
Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.
Though this is not what you asked for originally, let me offer a a very elegant real variable approach, for a change. I actually wrote an extensive blog post on this, with a few nice graphs, a while ago, so here I'll just give you the bare bones sketch. The argument comes from Introduction to Calculus and Analysis, vol. I, by Richard Courant and Fritz John, Interscience Publishers (1965), reprinted by Springer (1989).
Note first that $displaystyleint_0^inftyfrac{sin x}x,dx=sum_{k=0}^infty a_k$, where $displaystyle a_k=int_{pi k}^{pi(k+1)}frac{sin x}x,dx=int_0^pifrac{(-1)^ksin t}{pi k +t},dt$. This shows that the integral converges, by Leibniz criterion.
Second, note that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{rhotoinfty}int_0^{pirho}frac{sin x}{x},dx=lim_{rhotoinfty}int_0^pifrac{sin(rho t)}{t},dt$.
Third, and this is the key, $displaystyle lim_{ktoinfty}int_0^pisinleft(left(k+frac12right)tright)left(frac1t-frac1{2sin(t/2)}right),dt=0$. To see this, let $displaystyle f(t)=frac1t-frac1{2sin(t/2)}$. Check that $lim_{tto0^+}f(t)=0$ and, defining $f(0)=0$, we have that $f'(0)$ exists and equals $-1/24=lim_{tto0^+}f'(t)$. It follows that $f$ is continuously differentiable on $[0,pi]$ so we can integrate by parts to get
$$ int_0^pisin((k+1/2)t)f(t),dt=frac1{k+1/2}int_0^picos((k+1/2)t)f'(t),dtto_{ktoinfty}0. $$
It follows that $displaystyleint_0^inftyfrac{sin x}x,dx=lim_{ktoinfty}int_0^pifrac{sin(k+frac12)x}{2sin(x/2)},dx$.
Fourth, recall the identity $displaystyle f_k(t)=frac{sin(k+frac12)t}{2sin(t/2)}$, where $$ f_k(t)=frac12+cos t+cos(2t)+dots+cos(kt). $$ It follows that $displaystyle int_0^pifrac{sin(k+frac12)t}{2sin(t/2)},dt=int_0^pi f_k(t),dt= frac{pi}2$, and we are done.
answered Dec 2 '13 at 6:00
Andrés E. Caicedo
64.7k8158246
64.7k8158246
add a comment |
add a comment |
Since the integrand is even function, then you can consider
$$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$
1
I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
– Mr.Fry
Dec 2 '13 at 5:37
add a comment |
Since the integrand is even function, then you can consider
$$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$
1
I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
– Mr.Fry
Dec 2 '13 at 5:37
add a comment |
Since the integrand is even function, then you can consider
$$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$
Since the integrand is even function, then you can consider
$$ int^infty_0frac{sin(x)}{x}dx = frac{1}{2}int_{-infty}^infty frac{sin(x)}{x}dx .$$
answered Dec 2 '13 at 5:18
Mhenni Benghorbal
43.1k63574
43.1k63574
1
I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
– Mr.Fry
Dec 2 '13 at 5:37
add a comment |
1
I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
– Mr.Fry
Dec 2 '13 at 5:37
1
1
I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
– Mr.Fry
Dec 2 '13 at 5:37
I gave this an upvote since I used it to finish the problem :) sorry. However, I did leave the OP with some things to think about.
– Mr.Fry
Dec 2 '13 at 5:37
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f589158%2fi-am-trying-to-show-int-infty-0-frac-sinxxdx-frac-pi2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown