How to prove $int_0^infty ln(1+frac{z}{cosh(x)})dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$ and a closed...












9












$begingroup$


I observed graphically that $$f(z)=int_0^infty lnleft(1+frac{z}{cosh(x)}right)dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$$



Can anyone explain why this holds? I tried differentiating with respect to $z$ but I didn't really know how to continue further.



Also, if anyone knows how to obtain a closed form of $f(z)$ for $-1<z<1$ it would be greatly appreciated as I'm curious about specific values such as $f(-frac{1}{2})=-frac{7pi^2}{72}$ and $f(frac{1}{2})=frac{5pi^2}{72}.$










share|cite|improve this question











$endgroup$

















    9












    $begingroup$


    I observed graphically that $$f(z)=int_0^infty lnleft(1+frac{z}{cosh(x)}right)dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$$



    Can anyone explain why this holds? I tried differentiating with respect to $z$ but I didn't really know how to continue further.



    Also, if anyone knows how to obtain a closed form of $f(z)$ for $-1<z<1$ it would be greatly appreciated as I'm curious about specific values such as $f(-frac{1}{2})=-frac{7pi^2}{72}$ and $f(frac{1}{2})=frac{5pi^2}{72}.$










    share|cite|improve this question











    $endgroup$















      9












      9








      9


      5



      $begingroup$


      I observed graphically that $$f(z)=int_0^infty lnleft(1+frac{z}{cosh(x)}right)dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$$



      Can anyone explain why this holds? I tried differentiating with respect to $z$ but I didn't really know how to continue further.



      Also, if anyone knows how to obtain a closed form of $f(z)$ for $-1<z<1$ it would be greatly appreciated as I'm curious about specific values such as $f(-frac{1}{2})=-frac{7pi^2}{72}$ and $f(frac{1}{2})=frac{5pi^2}{72}.$










      share|cite|improve this question











      $endgroup$




      I observed graphically that $$f(z)=int_0^infty lnleft(1+frac{z}{cosh(x)}right)dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$$



      Can anyone explain why this holds? I tried differentiating with respect to $z$ but I didn't really know how to continue further.



      Also, if anyone knows how to obtain a closed form of $f(z)$ for $-1<z<1$ it would be greatly appreciated as I'm curious about specific values such as $f(-frac{1}{2})=-frac{7pi^2}{72}$ and $f(frac{1}{2})=frac{5pi^2}{72}.$







      calculus definite-integrals improper-integrals closed-form






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 22 '18 at 1:00









      Kemono Chen

      3,1721844




      3,1721844










      asked Dec 22 '18 at 0:13









      aledenaleden

      2,5301511




      2,5301511






















          3 Answers
          3






          active

          oldest

          votes


















          6












          $begingroup$

          Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
          $$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
          Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
          Recall $cosh x=frac12(e^x+e^{-x})$,
          $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
          =int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
          =int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
          =-4frac{arctan w}{1+w^2}$$

          $$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
          =int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
          =frac{pi^2}8-2arctan^2w$$

          Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
          The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
            $endgroup$
            – Frank W.
            Dec 23 '18 at 4:45










          • $begingroup$
            @Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
            $endgroup$
            – Kemono Chen
            Dec 23 '18 at 5:26



















          4












          $begingroup$

          Here is a more direct way.



          The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.



          From
          $$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
          on differentiating with respect to $z$ we have
          begin{align}
          f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
          &= int_0^infty frac{dx}{cosh x + z}\
          &= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
          end{align}

          In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.



          Making a substitution of $u = e^x, du = e^x , dx$ leads to
          $$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$





          Case 1: $-1 < z < 1$



          For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
          begin{align}
          f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
          &= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
          &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
          &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
          &= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
          end{align}

          where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.



          Noting that
          $$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
          the result in ($**$) can be rewritten as
          $$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
          Integrating up with respect to $z$ it is readily seen that
          $$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
          To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
          $$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$





          Case 2: $z > 1$



          For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
          begin{align}
          f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
          &= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
          &= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
          &= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
          end{align}

          where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.



          Noting that
          $$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
          the result in ($***$) can be written as
          $$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
          Integrating up with respect to $z$ it is readily seen that
          $$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
          To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
          $$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            (+1) because this solution is more directly than that of mine.
            $endgroup$
            – Kemono Chen
            Dec 23 '18 at 5:32



















          4












          $begingroup$

          First,
          $$
          begin{align}
          int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
          &=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
          &=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
          &=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
          &=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
          &=left{begin{array}{}
          frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
          frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
          end{array}right.tag5
          end{align}
          $$

          Explanation:
          $(1)$: substitute $z=tan(theta/2)$
          $(2)$: partial fractions
          $(3)$: integrate
          $(4)$: evaluate
          $(5)$: simplify in different cases



          Therefore,
          $$
          begin{align}
          int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
          &=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
          &=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
          &=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
          &=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
          &=left{begin{array}{}
          frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
          frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
          end{array}right.tag{10}
          end{align}
          $$

          Explanation:
          $phantom{1}(6)$: substitute $u=e^x$
          $phantom{1}(7)$: substitute $umapsto1/u$
          $phantom{1}(8)$: substitute $u=tan(theta)$
          $phantom{1}(9)$: substitute $thetamapstotheta/2$
          $(10)$: apply the integral of $(5)$






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049024%2fhow-to-prove-int-0-infty-ln1-fracz-coshxdx-frac-pi28-frac%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
            $$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
            Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
            Recall $cosh x=frac12(e^x+e^{-x})$,
            $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
            =int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
            =int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
            =-4frac{arctan w}{1+w^2}$$

            $$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
            =int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
            =frac{pi^2}8-2arctan^2w$$

            Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
            The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
              $endgroup$
              – Frank W.
              Dec 23 '18 at 4:45










            • $begingroup$
              @Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
              $endgroup$
              – Kemono Chen
              Dec 23 '18 at 5:26
















            6












            $begingroup$

            Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
            $$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
            Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
            Recall $cosh x=frac12(e^x+e^{-x})$,
            $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
            =int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
            =int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
            =-4frac{arctan w}{1+w^2}$$

            $$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
            =int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
            =frac{pi^2}8-2arctan^2w$$

            Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
            The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
              $endgroup$
              – Frank W.
              Dec 23 '18 at 4:45










            • $begingroup$
              @Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
              $endgroup$
              – Kemono Chen
              Dec 23 '18 at 5:26














            6












            6








            6





            $begingroup$

            Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
            $$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
            Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
            Recall $cosh x=frac12(e^x+e^{-x})$,
            $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
            =int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
            =int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
            =-4frac{arctan w}{1+w^2}$$

            $$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
            =int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
            =frac{pi^2}8-2arctan^2w$$

            Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
            The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.






            share|cite|improve this answer











            $endgroup$



            Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
            $$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
            Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
            Recall $cosh x=frac12(e^x+e^{-x})$,
            $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
            =int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
            =int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
            =-4frac{arctan w}{1+w^2}$$

            $$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
            =int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
            =frac{pi^2}8-2arctan^2w$$

            Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
            The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 22 '18 at 0:52

























            answered Dec 22 '18 at 0:47









            Kemono ChenKemono Chen

            3,1721844




            3,1721844












            • $begingroup$
              What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
              $endgroup$
              – Frank W.
              Dec 23 '18 at 4:45










            • $begingroup$
              @Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
              $endgroup$
              – Kemono Chen
              Dec 23 '18 at 5:26


















            • $begingroup$
              What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
              $endgroup$
              – Frank W.
              Dec 23 '18 at 4:45










            • $begingroup$
              @Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
              $endgroup$
              – Kemono Chen
              Dec 23 '18 at 5:26
















            $begingroup$
            What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
            $endgroup$
            – Frank W.
            Dec 23 '18 at 4:45




            $begingroup$
            What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
            $endgroup$
            – Frank W.
            Dec 23 '18 at 4:45












            $begingroup$
            @Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
            $endgroup$
            – Kemono Chen
            Dec 23 '18 at 5:26




            $begingroup$
            @Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
            $endgroup$
            – Kemono Chen
            Dec 23 '18 at 5:26











            4












            $begingroup$

            Here is a more direct way.



            The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.



            From
            $$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
            on differentiating with respect to $z$ we have
            begin{align}
            f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
            &= int_0^infty frac{dx}{cosh x + z}\
            &= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
            end{align}

            In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.



            Making a substitution of $u = e^x, du = e^x , dx$ leads to
            $$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$





            Case 1: $-1 < z < 1$



            For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
            begin{align}
            f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
            &= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
            &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
            &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
            &= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
            end{align}

            where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.



            Noting that
            $$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
            the result in ($**$) can be rewritten as
            $$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
            Integrating up with respect to $z$ it is readily seen that
            $$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
            To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
            $$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$





            Case 2: $z > 1$



            For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
            begin{align}
            f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
            &= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
            &= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
            &= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
            end{align}

            where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.



            Noting that
            $$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
            the result in ($***$) can be written as
            $$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
            Integrating up with respect to $z$ it is readily seen that
            $$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
            To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
            $$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              (+1) because this solution is more directly than that of mine.
              $endgroup$
              – Kemono Chen
              Dec 23 '18 at 5:32
















            4












            $begingroup$

            Here is a more direct way.



            The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.



            From
            $$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
            on differentiating with respect to $z$ we have
            begin{align}
            f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
            &= int_0^infty frac{dx}{cosh x + z}\
            &= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
            end{align}

            In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.



            Making a substitution of $u = e^x, du = e^x , dx$ leads to
            $$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$





            Case 1: $-1 < z < 1$



            For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
            begin{align}
            f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
            &= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
            &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
            &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
            &= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
            end{align}

            where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.



            Noting that
            $$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
            the result in ($**$) can be rewritten as
            $$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
            Integrating up with respect to $z$ it is readily seen that
            $$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
            To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
            $$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$





            Case 2: $z > 1$



            For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
            begin{align}
            f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
            &= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
            &= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
            &= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
            end{align}

            where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.



            Noting that
            $$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
            the result in ($***$) can be written as
            $$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
            Integrating up with respect to $z$ it is readily seen that
            $$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
            To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
            $$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              (+1) because this solution is more directly than that of mine.
              $endgroup$
              – Kemono Chen
              Dec 23 '18 at 5:32














            4












            4








            4





            $begingroup$

            Here is a more direct way.



            The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.



            From
            $$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
            on differentiating with respect to $z$ we have
            begin{align}
            f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
            &= int_0^infty frac{dx}{cosh x + z}\
            &= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
            end{align}

            In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.



            Making a substitution of $u = e^x, du = e^x , dx$ leads to
            $$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$





            Case 1: $-1 < z < 1$



            For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
            begin{align}
            f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
            &= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
            &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
            &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
            &= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
            end{align}

            where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.



            Noting that
            $$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
            the result in ($**$) can be rewritten as
            $$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
            Integrating up with respect to $z$ it is readily seen that
            $$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
            To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
            $$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$





            Case 2: $z > 1$



            For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
            begin{align}
            f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
            &= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
            &= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
            &= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
            end{align}

            where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.



            Noting that
            $$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
            the result in ($***$) can be written as
            $$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
            Integrating up with respect to $z$ it is readily seen that
            $$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
            To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
            $$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$






            share|cite|improve this answer









            $endgroup$



            Here is a more direct way.



            The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.



            From
            $$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
            on differentiating with respect to $z$ we have
            begin{align}
            f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
            &= int_0^infty frac{dx}{cosh x + z}\
            &= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
            end{align}

            In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.



            Making a substitution of $u = e^x, du = e^x , dx$ leads to
            $$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$





            Case 1: $-1 < z < 1$



            For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
            begin{align}
            f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
            &= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
            &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
            &= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
            &= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
            end{align}

            where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.



            Noting that
            $$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
            the result in ($**$) can be rewritten as
            $$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
            Integrating up with respect to $z$ it is readily seen that
            $$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
            To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
            $$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$





            Case 2: $z > 1$



            For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
            begin{align}
            f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
            &= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
            &= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
            &= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
            end{align}

            where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.



            Noting that
            $$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
            the result in ($***$) can be written as
            $$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
            Integrating up with respect to $z$ it is readily seen that
            $$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
            To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
            $$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 23 '18 at 4:41









            omegadotomegadot

            6,2592829




            6,2592829












            • $begingroup$
              (+1) because this solution is more directly than that of mine.
              $endgroup$
              – Kemono Chen
              Dec 23 '18 at 5:32


















            • $begingroup$
              (+1) because this solution is more directly than that of mine.
              $endgroup$
              – Kemono Chen
              Dec 23 '18 at 5:32
















            $begingroup$
            (+1) because this solution is more directly than that of mine.
            $endgroup$
            – Kemono Chen
            Dec 23 '18 at 5:32




            $begingroup$
            (+1) because this solution is more directly than that of mine.
            $endgroup$
            – Kemono Chen
            Dec 23 '18 at 5:32











            4












            $begingroup$

            First,
            $$
            begin{align}
            int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
            &=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
            &=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
            &=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
            &=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
            &=left{begin{array}{}
            frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
            frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
            end{array}right.tag5
            end{align}
            $$

            Explanation:
            $(1)$: substitute $z=tan(theta/2)$
            $(2)$: partial fractions
            $(3)$: integrate
            $(4)$: evaluate
            $(5)$: simplify in different cases



            Therefore,
            $$
            begin{align}
            int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
            &=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
            &=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
            &=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
            &=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
            &=left{begin{array}{}
            frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
            frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
            end{array}right.tag{10}
            end{align}
            $$

            Explanation:
            $phantom{1}(6)$: substitute $u=e^x$
            $phantom{1}(7)$: substitute $umapsto1/u$
            $phantom{1}(8)$: substitute $u=tan(theta)$
            $phantom{1}(9)$: substitute $thetamapstotheta/2$
            $(10)$: apply the integral of $(5)$






            share|cite|improve this answer









            $endgroup$


















              4












              $begingroup$

              First,
              $$
              begin{align}
              int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
              &=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
              &=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
              &=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
              &=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
              &=left{begin{array}{}
              frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
              frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
              end{array}right.tag5
              end{align}
              $$

              Explanation:
              $(1)$: substitute $z=tan(theta/2)$
              $(2)$: partial fractions
              $(3)$: integrate
              $(4)$: evaluate
              $(5)$: simplify in different cases



              Therefore,
              $$
              begin{align}
              int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
              &=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
              &=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
              &=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
              &=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
              &=left{begin{array}{}
              frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
              frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
              end{array}right.tag{10}
              end{align}
              $$

              Explanation:
              $phantom{1}(6)$: substitute $u=e^x$
              $phantom{1}(7)$: substitute $umapsto1/u$
              $phantom{1}(8)$: substitute $u=tan(theta)$
              $phantom{1}(9)$: substitute $thetamapstotheta/2$
              $(10)$: apply the integral of $(5)$






              share|cite|improve this answer









              $endgroup$
















                4












                4








                4





                $begingroup$

                First,
                $$
                begin{align}
                int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
                &=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
                &=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
                &=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
                &=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
                &=left{begin{array}{}
                frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
                frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
                end{array}right.tag5
                end{align}
                $$

                Explanation:
                $(1)$: substitute $z=tan(theta/2)$
                $(2)$: partial fractions
                $(3)$: integrate
                $(4)$: evaluate
                $(5)$: simplify in different cases



                Therefore,
                $$
                begin{align}
                int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
                &=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
                &=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
                &=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
                &=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
                &=left{begin{array}{}
                frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
                frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
                end{array}right.tag{10}
                end{align}
                $$

                Explanation:
                $phantom{1}(6)$: substitute $u=e^x$
                $phantom{1}(7)$: substitute $umapsto1/u$
                $phantom{1}(8)$: substitute $u=tan(theta)$
                $phantom{1}(9)$: substitute $thetamapstotheta/2$
                $(10)$: apply the integral of $(5)$






                share|cite|improve this answer









                $endgroup$



                First,
                $$
                begin{align}
                int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
                &=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
                &=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
                &=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
                &=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
                &=left{begin{array}{}
                frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
                frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
                end{array}right.tag5
                end{align}
                $$

                Explanation:
                $(1)$: substitute $z=tan(theta/2)$
                $(2)$: partial fractions
                $(3)$: integrate
                $(4)$: evaluate
                $(5)$: simplify in different cases



                Therefore,
                $$
                begin{align}
                int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
                &=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
                &=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
                &=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
                &=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
                &=left{begin{array}{}
                frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
                frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
                end{array}right.tag{10}
                end{align}
                $$

                Explanation:
                $phantom{1}(6)$: substitute $u=e^x$
                $phantom{1}(7)$: substitute $umapsto1/u$
                $phantom{1}(8)$: substitute $u=tan(theta)$
                $phantom{1}(9)$: substitute $thetamapstotheta/2$
                $(10)$: apply the integral of $(5)$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 23 '18 at 12:25









                robjohnrobjohn

                270k27312639




                270k27312639






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049024%2fhow-to-prove-int-0-infty-ln1-fracz-coshxdx-frac-pi28-frac%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten