Conditional probabilities summing to one












1












$begingroup$


Let's assume that we have two Bernoulli random variables: $A$ (can be true or false) and $B$ (can be true or false), and further assume we have been given $P(A=text{true}mid B=text{true})$ and $P(A=text{true}mid B=text{false})$.



Is it possible to calculate $P(A=text{false}mid B=text{true})$ and $P(A=text{false}mid B=text{false})$ from this? I think what it must hold is that these four terms must sum to one, i.e. $$P(A=text{true}mid B=text{true}) + P(A=text{true}mid B=text{false}) \+ P(A=text{false}mid B=text{true}) + P(A=text{false}mid B=text{false}) = 1.$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let's assume that we have two Bernoulli random variables: $A$ (can be true or false) and $B$ (can be true or false), and further assume we have been given $P(A=text{true}mid B=text{true})$ and $P(A=text{true}mid B=text{false})$.



    Is it possible to calculate $P(A=text{false}mid B=text{true})$ and $P(A=text{false}mid B=text{false})$ from this? I think what it must hold is that these four terms must sum to one, i.e. $$P(A=text{true}mid B=text{true}) + P(A=text{true}mid B=text{false}) \+ P(A=text{false}mid B=text{true}) + P(A=text{false}mid B=text{false}) = 1.$$










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let's assume that we have two Bernoulli random variables: $A$ (can be true or false) and $B$ (can be true or false), and further assume we have been given $P(A=text{true}mid B=text{true})$ and $P(A=text{true}mid B=text{false})$.



      Is it possible to calculate $P(A=text{false}mid B=text{true})$ and $P(A=text{false}mid B=text{false})$ from this? I think what it must hold is that these four terms must sum to one, i.e. $$P(A=text{true}mid B=text{true}) + P(A=text{true}mid B=text{false}) \+ P(A=text{false}mid B=text{true}) + P(A=text{false}mid B=text{false}) = 1.$$










      share|cite|improve this question











      $endgroup$




      Let's assume that we have two Bernoulli random variables: $A$ (can be true or false) and $B$ (can be true or false), and further assume we have been given $P(A=text{true}mid B=text{true})$ and $P(A=text{true}mid B=text{false})$.



      Is it possible to calculate $P(A=text{false}mid B=text{true})$ and $P(A=text{false}mid B=text{false})$ from this? I think what it must hold is that these four terms must sum to one, i.e. $$P(A=text{true}mid B=text{true}) + P(A=text{true}mid B=text{false}) \+ P(A=text{false}mid B=text{true}) + P(A=text{false}mid B=text{false}) = 1.$$







      probability conditional-probability






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 22 '18 at 11:21









      Saad

      20.2k92352




      20.2k92352










      asked Dec 22 '18 at 11:11









      machinerymachinery

      1365




      1365






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          No it's incorrect.
          $$P(A=true|B=true)+P(A=false|B=true)$$
          $$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
          $$=frac{P(B=true)}{P(B=true)}=1$$
          Similarly,
          $$P(A=true|B=false)+P(A=false|B=false)=1$$
          Thus, yes you can calculate the variables required, but the equation you wrote was incorrect






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$



            but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              The summation you mention gives sum $2$ (not $1$).



              This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$



              In both cases if you know one of terms then you also know the other one.






              share|cite|improve this answer









              $endgroup$














                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049325%2fconditional-probabilities-summing-to-one%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                No it's incorrect.
                $$P(A=true|B=true)+P(A=false|B=true)$$
                $$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
                $$=frac{P(B=true)}{P(B=true)}=1$$
                Similarly,
                $$P(A=true|B=false)+P(A=false|B=false)=1$$
                Thus, yes you can calculate the variables required, but the equation you wrote was incorrect






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  No it's incorrect.
                  $$P(A=true|B=true)+P(A=false|B=true)$$
                  $$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
                  $$=frac{P(B=true)}{P(B=true)}=1$$
                  Similarly,
                  $$P(A=true|B=false)+P(A=false|B=false)=1$$
                  Thus, yes you can calculate the variables required, but the equation you wrote was incorrect






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    No it's incorrect.
                    $$P(A=true|B=true)+P(A=false|B=true)$$
                    $$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
                    $$=frac{P(B=true)}{P(B=true)}=1$$
                    Similarly,
                    $$P(A=true|B=false)+P(A=false|B=false)=1$$
                    Thus, yes you can calculate the variables required, but the equation you wrote was incorrect






                    share|cite|improve this answer









                    $endgroup$



                    No it's incorrect.
                    $$P(A=true|B=true)+P(A=false|B=true)$$
                    $$=frac{P(A=true,B=true)}{P(B=true)}+frac{P(A=false,B=true)}{P(B=true)}$$
                    $$=frac{P(B=true)}{P(B=true)}=1$$
                    Similarly,
                    $$P(A=true|B=false)+P(A=false|B=false)=1$$
                    Thus, yes you can calculate the variables required, but the equation you wrote was incorrect







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 22 '18 at 11:25









                    Ankit KumarAnkit Kumar

                    1,542221




                    1,542221























                        2












                        $begingroup$

                        Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$



                        but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$



                          but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$



                            but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$






                            share|cite|improve this answer









                            $endgroup$



                            Not quite. You have across all joint possibilities $$P(A=text{true} text{ and } B=text{true}) + P(A=text{true}text{ and }B=text{false}) \;,,+ P(A=text{false}text{ and } B=text{true}) + P(A=text{false}text{ and } B=text{false}) = 1$$



                            but for conditional probabilities you have two equations $$P(A=text{true}mid B=text{true}) + P(A=text{false}mid B=text{true}) =1\P(A=text{true}mid B=text{false}) + P(A=text{false}mid B=text{false}) = 1$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 22 '18 at 11:27









                            HenryHenry

                            101k482169




                            101k482169























                                1












                                $begingroup$

                                The summation you mention gives sum $2$ (not $1$).



                                This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$



                                In both cases if you know one of terms then you also know the other one.






                                share|cite|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$

                                  The summation you mention gives sum $2$ (not $1$).



                                  This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$



                                  In both cases if you know one of terms then you also know the other one.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    The summation you mention gives sum $2$ (not $1$).



                                    This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$



                                    In both cases if you know one of terms then you also know the other one.






                                    share|cite|improve this answer









                                    $endgroup$



                                    The summation you mention gives sum $2$ (not $1$).



                                    This because: $$P(A=text{true}mid B=text{true})+P(A=text{false}mid B=text{true})=1$$ and: $$P(A=text{true}mid B=text{false})+P(A=text{false}mid B=text{false})=1$$



                                    In both cases if you know one of terms then you also know the other one.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Dec 22 '18 at 11:33









                                    drhabdrhab

                                    104k545136




                                    104k545136






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049325%2fconditional-probabilities-summing-to-one%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Bundesstraße 106

                                        Verónica Boquete

                                        Ida-Boy-Ed-Garten