How to integrate moving Heaviside block?












0












$begingroup$


I spent a lot of time figuring out how to integrate a convolution of a heaviside function with another heaviside function, but so far I couldn't find any closed form.



$$int_{-infty}^{infty} Hleft(frac{1}{2}-tauright) H_frac{1}{2}(tau)H_1(t-tau) dtau$$ and by $H_a$ I mean:
$$
H_a(x)=
begin{cases}
1 & -aleq xleq a \
0 & ;text{ otherwise}
end{cases}
$$

I know the integral is equal to:



$$int_{-frac{1}{2}}^{frac{1}{2}}H_1(t-tau) dtau$$



But I can't work this off any further.



enter image description here










share|cite|improve this question











$endgroup$












  • $begingroup$
    @YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
    $endgroup$
    – Sam Farjamirad
    Dec 26 '18 at 16:57










  • $begingroup$
    In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
    $endgroup$
    – md2perpe
    Dec 26 '18 at 17:25










  • $begingroup$
    @md2perpe I edited the code, sorry for the confusion.
    $endgroup$
    – Sam Farjamirad
    Dec 26 '18 at 17:38






  • 1




    $begingroup$
    Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
    $endgroup$
    – md2perpe
    Dec 26 '18 at 18:34
















0












$begingroup$


I spent a lot of time figuring out how to integrate a convolution of a heaviside function with another heaviside function, but so far I couldn't find any closed form.



$$int_{-infty}^{infty} Hleft(frac{1}{2}-tauright) H_frac{1}{2}(tau)H_1(t-tau) dtau$$ and by $H_a$ I mean:
$$
H_a(x)=
begin{cases}
1 & -aleq xleq a \
0 & ;text{ otherwise}
end{cases}
$$

I know the integral is equal to:



$$int_{-frac{1}{2}}^{frac{1}{2}}H_1(t-tau) dtau$$



But I can't work this off any further.



enter image description here










share|cite|improve this question











$endgroup$












  • $begingroup$
    @YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
    $endgroup$
    – Sam Farjamirad
    Dec 26 '18 at 16:57










  • $begingroup$
    In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
    $endgroup$
    – md2perpe
    Dec 26 '18 at 17:25










  • $begingroup$
    @md2perpe I edited the code, sorry for the confusion.
    $endgroup$
    – Sam Farjamirad
    Dec 26 '18 at 17:38






  • 1




    $begingroup$
    Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
    $endgroup$
    – md2perpe
    Dec 26 '18 at 18:34














0












0








0


1



$begingroup$


I spent a lot of time figuring out how to integrate a convolution of a heaviside function with another heaviside function, but so far I couldn't find any closed form.



$$int_{-infty}^{infty} Hleft(frac{1}{2}-tauright) H_frac{1}{2}(tau)H_1(t-tau) dtau$$ and by $H_a$ I mean:
$$
H_a(x)=
begin{cases}
1 & -aleq xleq a \
0 & ;text{ otherwise}
end{cases}
$$

I know the integral is equal to:



$$int_{-frac{1}{2}}^{frac{1}{2}}H_1(t-tau) dtau$$



But I can't work this off any further.



enter image description here










share|cite|improve this question











$endgroup$




I spent a lot of time figuring out how to integrate a convolution of a heaviside function with another heaviside function, but so far I couldn't find any closed form.



$$int_{-infty}^{infty} Hleft(frac{1}{2}-tauright) H_frac{1}{2}(tau)H_1(t-tau) dtau$$ and by $H_a$ I mean:
$$
H_a(x)=
begin{cases}
1 & -aleq xleq a \
0 & ;text{ otherwise}
end{cases}
$$

I know the integral is equal to:



$$int_{-frac{1}{2}}^{frac{1}{2}}H_1(t-tau) dtau$$



But I can't work this off any further.



enter image description here







integration convolution characteristic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 26 '18 at 18:40









Namaste

1




1










asked Dec 26 '18 at 16:35









Sam FarjamiradSam Farjamirad

1619




1619












  • $begingroup$
    @YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
    $endgroup$
    – Sam Farjamirad
    Dec 26 '18 at 16:57










  • $begingroup$
    In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
    $endgroup$
    – md2perpe
    Dec 26 '18 at 17:25










  • $begingroup$
    @md2perpe I edited the code, sorry for the confusion.
    $endgroup$
    – Sam Farjamirad
    Dec 26 '18 at 17:38






  • 1




    $begingroup$
    Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
    $endgroup$
    – md2perpe
    Dec 26 '18 at 18:34


















  • $begingroup$
    @YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
    $endgroup$
    – Sam Farjamirad
    Dec 26 '18 at 16:57










  • $begingroup$
    In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
    $endgroup$
    – md2perpe
    Dec 26 '18 at 17:25










  • $begingroup$
    @md2perpe I edited the code, sorry for the confusion.
    $endgroup$
    – Sam Farjamirad
    Dec 26 '18 at 17:38






  • 1




    $begingroup$
    Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
    $endgroup$
    – md2perpe
    Dec 26 '18 at 18:34
















$begingroup$
@YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 16:57




$begingroup$
@YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 16:57












$begingroup$
In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
$endgroup$
– md2perpe
Dec 26 '18 at 17:25




$begingroup$
In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
$endgroup$
– md2perpe
Dec 26 '18 at 17:25












$begingroup$
@md2perpe I edited the code, sorry for the confusion.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 17:38




$begingroup$
@md2perpe I edited the code, sorry for the confusion.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 17:38




1




1




$begingroup$
Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
$endgroup$
– md2perpe
Dec 26 '18 at 18:34




$begingroup$
Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
$endgroup$
– md2perpe
Dec 26 '18 at 18:34










3 Answers
3






active

oldest

votes


















2












$begingroup$

Write the integrand as
$$
f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
$$

then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.

That means to impose the contemporaneous validity of the following inequalities:
$$
eqalign{
& f(t,tau ) = 1;:;left{ matrix{
0 le {1 over 2} - tau hfill cr
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ matrix{
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ {matrix{
{ - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
{ - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{ - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right. cr}
$$



Thus the integral will be
$$
int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
{{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right.
$$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
    $$
    begin{split}
    intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
    & = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
    text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
    & = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
    end{split}label{1}tag{1}
    $$

    Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):




    • if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
      $$
      intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
      =left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
      $$


    • if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
      $$
      intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
      $$


    • if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.



    In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:



    enter image description here






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      For future readers, this is also a correct answer. Thank you Daniele.
      $endgroup$
      – Sam Farjamirad
      Dec 29 '18 at 9:38






    • 1




      $begingroup$
      Thanks @SamFarjamirad. I am glad to be of some help.
      $endgroup$
      – Daniele Tampieri
      Dec 29 '18 at 10:03



















    1












    $begingroup$

    Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
    $$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
    begin{multline*}
    =int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
    end{multline*}



    First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$



    $$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$



    If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$



    Otherwise:
    $$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$






    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053084%2fhow-to-integrate-moving-heaviside-block%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Write the integrand as
      $$
      f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
      $$

      then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.

      That means to impose the contemporaneous validity of the following inequalities:
      $$
      eqalign{
      & f(t,tau ) = 1;:;left{ matrix{
      0 le {1 over 2} - tau hfill cr
      - {1 over 2} le tau le {1 over 2} hfill cr
      - 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
      & Rightarrow quad left{ matrix{
      - {1 over 2} le tau le {1 over 2} hfill cr
      - 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
      & Rightarrow quad left{ {matrix{
      { - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
      { - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
      { - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
      } } right. cr}
      $$



      Thus the integral will be
      $$
      int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
      {{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
      1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
      {{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
      } } right.
      $$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        Write the integrand as
        $$
        f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
        $$

        then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.

        That means to impose the contemporaneous validity of the following inequalities:
        $$
        eqalign{
        & f(t,tau ) = 1;:;left{ matrix{
        0 le {1 over 2} - tau hfill cr
        - {1 over 2} le tau le {1 over 2} hfill cr
        - 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
        & Rightarrow quad left{ matrix{
        - {1 over 2} le tau le {1 over 2} hfill cr
        - 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
        & Rightarrow quad left{ {matrix{
        { - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
        { - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
        { - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
        } } right. cr}
        $$



        Thus the integral will be
        $$
        int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
        {{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
        1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
        {{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
        } } right.
        $$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          Write the integrand as
          $$
          f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
          $$

          then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.

          That means to impose the contemporaneous validity of the following inequalities:
          $$
          eqalign{
          & f(t,tau ) = 1;:;left{ matrix{
          0 le {1 over 2} - tau hfill cr
          - {1 over 2} le tau le {1 over 2} hfill cr
          - 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
          & Rightarrow quad left{ matrix{
          - {1 over 2} le tau le {1 over 2} hfill cr
          - 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
          & Rightarrow quad left{ {matrix{
          { - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
          { - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
          { - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
          } } right. cr}
          $$



          Thus the integral will be
          $$
          int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
          {{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
          1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
          {{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
          } } right.
          $$






          share|cite|improve this answer









          $endgroup$



          Write the integrand as
          $$
          f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
          $$

          then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.

          That means to impose the contemporaneous validity of the following inequalities:
          $$
          eqalign{
          & f(t,tau ) = 1;:;left{ matrix{
          0 le {1 over 2} - tau hfill cr
          - {1 over 2} le tau le {1 over 2} hfill cr
          - 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
          & Rightarrow quad left{ matrix{
          - {1 over 2} le tau le {1 over 2} hfill cr
          - 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
          & Rightarrow quad left{ {matrix{
          { - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
          { - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
          { - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
          } } right. cr}
          $$



          Thus the integral will be
          $$
          int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
          {{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
          1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
          {{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
          } } right.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 27 '18 at 19:55









          G CabG Cab

          20.5k31341




          20.5k31341























              3












              $begingroup$

              I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
              $$
              begin{split}
              intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
              & = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
              text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
              & = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
              end{split}label{1}tag{1}
              $$

              Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):




              • if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
                $$
                intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
                =left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
                $$


              • if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
                $$
                intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
                $$


              • if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.



              In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:



              enter image description here






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                For future readers, this is also a correct answer. Thank you Daniele.
                $endgroup$
                – Sam Farjamirad
                Dec 29 '18 at 9:38






              • 1




                $begingroup$
                Thanks @SamFarjamirad. I am glad to be of some help.
                $endgroup$
                – Daniele Tampieri
                Dec 29 '18 at 10:03
















              3












              $begingroup$

              I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
              $$
              begin{split}
              intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
              & = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
              text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
              & = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
              end{split}label{1}tag{1}
              $$

              Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):




              • if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
                $$
                intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
                =left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
                $$


              • if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
                $$
                intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
                $$


              • if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.



              In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:



              enter image description here






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                For future readers, this is also a correct answer. Thank you Daniele.
                $endgroup$
                – Sam Farjamirad
                Dec 29 '18 at 9:38






              • 1




                $begingroup$
                Thanks @SamFarjamirad. I am glad to be of some help.
                $endgroup$
                – Daniele Tampieri
                Dec 29 '18 at 10:03














              3












              3








              3





              $begingroup$

              I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
              $$
              begin{split}
              intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
              & = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
              text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
              & = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
              end{split}label{1}tag{1}
              $$

              Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):




              • if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
                $$
                intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
                =left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
                $$


              • if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
                $$
                intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
                $$


              • if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.



              In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:



              enter image description here






              share|cite|improve this answer











              $endgroup$



              I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
              $$
              begin{split}
              intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
              & = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
              text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
              & = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
              end{split}label{1}tag{1}
              $$

              Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):




              • if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
                $$
                intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
                =left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
                $$


              • if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
                $$
                intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
                $$


              • if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.



              In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:



              enter image description here







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 27 '18 at 18:18

























              answered Dec 26 '18 at 18:33









              Daniele TampieriDaniele Tampieri

              2,68721022




              2,68721022












              • $begingroup$
                For future readers, this is also a correct answer. Thank you Daniele.
                $endgroup$
                – Sam Farjamirad
                Dec 29 '18 at 9:38






              • 1




                $begingroup$
                Thanks @SamFarjamirad. I am glad to be of some help.
                $endgroup$
                – Daniele Tampieri
                Dec 29 '18 at 10:03


















              • $begingroup$
                For future readers, this is also a correct answer. Thank you Daniele.
                $endgroup$
                – Sam Farjamirad
                Dec 29 '18 at 9:38






              • 1




                $begingroup$
                Thanks @SamFarjamirad. I am glad to be of some help.
                $endgroup$
                – Daniele Tampieri
                Dec 29 '18 at 10:03
















              $begingroup$
              For future readers, this is also a correct answer. Thank you Daniele.
              $endgroup$
              – Sam Farjamirad
              Dec 29 '18 at 9:38




              $begingroup$
              For future readers, this is also a correct answer. Thank you Daniele.
              $endgroup$
              – Sam Farjamirad
              Dec 29 '18 at 9:38




              1




              1




              $begingroup$
              Thanks @SamFarjamirad. I am glad to be of some help.
              $endgroup$
              – Daniele Tampieri
              Dec 29 '18 at 10:03




              $begingroup$
              Thanks @SamFarjamirad. I am glad to be of some help.
              $endgroup$
              – Daniele Tampieri
              Dec 29 '18 at 10:03











              1












              $begingroup$

              Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
              $$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
              begin{multline*}
              =int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
              end{multline*}



              First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$



              $$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$



              If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$



              Otherwise:
              $$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
                $$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
                begin{multline*}
                =int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
                end{multline*}



                First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$



                $$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$



                If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$



                Otherwise:
                $$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
                  $$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
                  begin{multline*}
                  =int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
                  end{multline*}



                  First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$



                  $$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$



                  If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$



                  Otherwise:
                  $$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$






                  share|cite|improve this answer











                  $endgroup$



                  Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
                  $$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
                  begin{multline*}
                  =int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
                  end{multline*}



                  First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$



                  $$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$



                  If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$



                  Otherwise:
                  $$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 26 '18 at 18:29

























                  answered Dec 26 '18 at 18:23









                  KotSmileKotSmile

                  316




                  316






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053084%2fhow-to-integrate-moving-heaviside-block%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten