How to integrate moving Heaviside block?
$begingroup$
I spent a lot of time figuring out how to integrate a convolution of a heaviside function with another heaviside function, but so far I couldn't find any closed form.
$$int_{-infty}^{infty} Hleft(frac{1}{2}-tauright) H_frac{1}{2}(tau)H_1(t-tau) dtau$$ and by $H_a$ I mean:
$$
H_a(x)=
begin{cases}
1 & -aleq xleq a \
0 & ;text{ otherwise}
end{cases}
$$
I know the integral is equal to:
$$int_{-frac{1}{2}}^{frac{1}{2}}H_1(t-tau) dtau$$
But I can't work this off any further.
integration convolution characteristic-functions
$endgroup$
add a comment |
$begingroup$
I spent a lot of time figuring out how to integrate a convolution of a heaviside function with another heaviside function, but so far I couldn't find any closed form.
$$int_{-infty}^{infty} Hleft(frac{1}{2}-tauright) H_frac{1}{2}(tau)H_1(t-tau) dtau$$ and by $H_a$ I mean:
$$
H_a(x)=
begin{cases}
1 & -aleq xleq a \
0 & ;text{ otherwise}
end{cases}
$$
I know the integral is equal to:
$$int_{-frac{1}{2}}^{frac{1}{2}}H_1(t-tau) dtau$$
But I can't work this off any further.
integration convolution characteristic-functions
$endgroup$
$begingroup$
@YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 16:57
$begingroup$
In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
$endgroup$
– md2perpe
Dec 26 '18 at 17:25
$begingroup$
@md2perpe I edited the code, sorry for the confusion.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 17:38
1
$begingroup$
Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
$endgroup$
– md2perpe
Dec 26 '18 at 18:34
add a comment |
$begingroup$
I spent a lot of time figuring out how to integrate a convolution of a heaviside function with another heaviside function, but so far I couldn't find any closed form.
$$int_{-infty}^{infty} Hleft(frac{1}{2}-tauright) H_frac{1}{2}(tau)H_1(t-tau) dtau$$ and by $H_a$ I mean:
$$
H_a(x)=
begin{cases}
1 & -aleq xleq a \
0 & ;text{ otherwise}
end{cases}
$$
I know the integral is equal to:
$$int_{-frac{1}{2}}^{frac{1}{2}}H_1(t-tau) dtau$$
But I can't work this off any further.
integration convolution characteristic-functions
$endgroup$
I spent a lot of time figuring out how to integrate a convolution of a heaviside function with another heaviside function, but so far I couldn't find any closed form.
$$int_{-infty}^{infty} Hleft(frac{1}{2}-tauright) H_frac{1}{2}(tau)H_1(t-tau) dtau$$ and by $H_a$ I mean:
$$
H_a(x)=
begin{cases}
1 & -aleq xleq a \
0 & ;text{ otherwise}
end{cases}
$$
I know the integral is equal to:
$$int_{-frac{1}{2}}^{frac{1}{2}}H_1(t-tau) dtau$$
But I can't work this off any further.
integration convolution characteristic-functions
integration convolution characteristic-functions
edited Dec 26 '18 at 18:40
Namaste
1
1
asked Dec 26 '18 at 16:35
Sam FarjamiradSam Farjamirad
1619
1619
$begingroup$
@YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 16:57
$begingroup$
In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
$endgroup$
– md2perpe
Dec 26 '18 at 17:25
$begingroup$
@md2perpe I edited the code, sorry for the confusion.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 17:38
1
$begingroup$
Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
$endgroup$
– md2perpe
Dec 26 '18 at 18:34
add a comment |
$begingroup$
@YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 16:57
$begingroup$
In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
$endgroup$
– md2perpe
Dec 26 '18 at 17:25
$begingroup$
@md2perpe I edited the code, sorry for the confusion.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 17:38
1
$begingroup$
Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
$endgroup$
– md2perpe
Dec 26 '18 at 18:34
$begingroup$
@YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 16:57
$begingroup$
@YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 16:57
$begingroup$
In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
$endgroup$
– md2perpe
Dec 26 '18 at 17:25
$begingroup$
In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
$endgroup$
– md2perpe
Dec 26 '18 at 17:25
$begingroup$
@md2perpe I edited the code, sorry for the confusion.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 17:38
$begingroup$
@md2perpe I edited the code, sorry for the confusion.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 17:38
1
1
$begingroup$
Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
$endgroup$
– md2perpe
Dec 26 '18 at 18:34
$begingroup$
Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
$endgroup$
– md2perpe
Dec 26 '18 at 18:34
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Write the integrand as
$$
f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
$$
then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.
That means to impose the contemporaneous validity of the following inequalities:
$$
eqalign{
& f(t,tau ) = 1;:;left{ matrix{
0 le {1 over 2} - tau hfill cr
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ matrix{
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ {matrix{
{ - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
{ - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{ - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right. cr}
$$
Thus the integral will be
$$
int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
{{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right.
$$
$endgroup$
add a comment |
$begingroup$
I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
$$
begin{split}
intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
& = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
& = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
end{split}label{1}tag{1}
$$
Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):
if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
=left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
$$if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
$$if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.
In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:
$endgroup$
$begingroup$
For future readers, this is also a correct answer. Thank you Daniele.
$endgroup$
– Sam Farjamirad
Dec 29 '18 at 9:38
1
$begingroup$
Thanks @SamFarjamirad. I am glad to be of some help.
$endgroup$
– Daniele Tampieri
Dec 29 '18 at 10:03
add a comment |
$begingroup$
Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
$$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
begin{multline*}
=int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
end{multline*}
First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$
$$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$
If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$
Otherwise:
$$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053084%2fhow-to-integrate-moving-heaviside-block%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write the integrand as
$$
f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
$$
then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.
That means to impose the contemporaneous validity of the following inequalities:
$$
eqalign{
& f(t,tau ) = 1;:;left{ matrix{
0 le {1 over 2} - tau hfill cr
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ matrix{
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ {matrix{
{ - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
{ - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{ - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right. cr}
$$
Thus the integral will be
$$
int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
{{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right.
$$
$endgroup$
add a comment |
$begingroup$
Write the integrand as
$$
f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
$$
then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.
That means to impose the contemporaneous validity of the following inequalities:
$$
eqalign{
& f(t,tau ) = 1;:;left{ matrix{
0 le {1 over 2} - tau hfill cr
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ matrix{
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ {matrix{
{ - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
{ - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{ - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right. cr}
$$
Thus the integral will be
$$
int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
{{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right.
$$
$endgroup$
add a comment |
$begingroup$
Write the integrand as
$$
f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
$$
then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.
That means to impose the contemporaneous validity of the following inequalities:
$$
eqalign{
& f(t,tau ) = 1;:;left{ matrix{
0 le {1 over 2} - tau hfill cr
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ matrix{
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ {matrix{
{ - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
{ - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{ - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right. cr}
$$
Thus the integral will be
$$
int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
{{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right.
$$
$endgroup$
Write the integrand as
$$
f(t,tau ) = Hleft( {{1 over 2} - tau } right)H_{,1/2} left( tau right)H_{,1} left( {t - tau } right)
$$
then according to your definitions, the integrand will be one when all the three terms are so, and null otherwise.
That means to impose the contemporaneous validity of the following inequalities:
$$
eqalign{
& f(t,tau ) = 1;:;left{ matrix{
0 le {1 over 2} - tau hfill cr
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 le t - tau le 1 hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ matrix{
- {1 over 2} le tau le {1 over 2} hfill cr
- 1 + t le tau le 1 + t hfill cr} right.quad Rightarrow cr
& Rightarrow quad left{ {matrix{
{ - {1 over 2} le tau le 1 + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
{ - {1 over 2} le tau le {1 over 2}} & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{ - 1 + t le tau le {1 over 2}} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right. cr}
$$
Thus the integral will be
$$
int_{ - infty }^infty {f(t,tau )dtau } = left{ {matrix{
{{3 over 2} + t} & {left| {; - {3 over 2} le t < - {1 over 2}} right.} cr
1 & {left| {; - {1 over 2} le t < {1 over 2}} right.} cr
{{3 over 2} - t} & {left| {;{1 over 2} le t < {3 over 2}} right.} cr
} } right.
$$
answered Dec 27 '18 at 19:55
G CabG Cab
20.5k31341
20.5k31341
add a comment |
add a comment |
$begingroup$
I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
$$
begin{split}
intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
& = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
& = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
end{split}label{1}tag{1}
$$
Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):
if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
=left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
$$if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
$$if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.
In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:
$endgroup$
$begingroup$
For future readers, this is also a correct answer. Thank you Daniele.
$endgroup$
– Sam Farjamirad
Dec 29 '18 at 9:38
1
$begingroup$
Thanks @SamFarjamirad. I am glad to be of some help.
$endgroup$
– Daniele Tampieri
Dec 29 '18 at 10:03
add a comment |
$begingroup$
I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
$$
begin{split}
intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
& = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
& = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
end{split}label{1}tag{1}
$$
Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):
if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
=left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
$$if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
$$if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.
In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:
$endgroup$
$begingroup$
For future readers, this is also a correct answer. Thank you Daniele.
$endgroup$
– Sam Farjamirad
Dec 29 '18 at 9:38
1
$begingroup$
Thanks @SamFarjamirad. I am glad to be of some help.
$endgroup$
– Daniele Tampieri
Dec 29 '18 at 10:03
add a comment |
$begingroup$
I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
$$
begin{split}
intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
& = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
& = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
end{split}label{1}tag{1}
$$
Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):
if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
=left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
$$if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
$$if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.
In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:
$endgroup$
I have changed a little bit the notation by putting $H_a=chi_a$, meaning this as the characteristic function. of the interval $[-a,a]$: therefore we have
$$
begin{split}
intlimits_{-infty}^{+infty} Hleft(frac{1}{2}-tauright) chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau &= intlimits_{-infty}^{+frac{1}{2}} chi_frac{1}{2}(tau),chi_1(t-tau) mathrm{d}tau \
& = intlimits_{-frac{1}{2}}^{+frac{1}{2}} chi_1(t-tau) mathrm{d}tau \
text{ and by the change of variables $t-tau =z$ (and } z=tau &text{) we have that}\
& = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau\
end{split}label{1}tag{1}
$$
Now we have to analyze the different values of the integral for $t$ varying in $mathbb{R}$ (I will consider only the values $t>0$ and $|t|le frac{1}{2}$ since the method is identical for $t<0$):
if $-frac{1}{2}le tle frac{1}{2}$, then $|tau|le 1$ thus $chi_1(tau)$ is equal to $1$. The last integral at the right member of eqref{1} is then equal to the measure of the interval $left[t-frac{1}{2},t+ frac{1}{2}right]$ i.e. $1$:
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{t+frac{1}{2}}mathrm{d}tau
=left[ tauright]^{t+frac{1}{2}}_{t-frac{1}{2}}=1
$$if $frac{1}{2} < t le frac{3}{2}$, then $tau in [a,b]$ where $0 < a=t-frac{1}{2}le 1$ and $1 < b =t+frac{1}{2}le 2$. Then the function $chi_1(tau)$ is equal to $1$ only on the interval $[a,1]$ and the integral eqref{1} is equal to
$$
intlimits_{t-frac{1}{2}}^{t+frac{1}{2}} chi_1(tau) mathrm{d}tau = intlimits_{t-frac{1}{2}}^{1}mathrm{d}tau = left[ tauright]^{1}_{t-frac{1}{2}}=frac{3}{2}-t
$$if $frac{3}{2} < t $, then $tau$ is always larger than $1$, thus the function $chi_1(tau)$ and as a consequence the integral eqref{1} is always $0$.
In sum, to evaluate integral eqref{1} we have to compare the support of the indicator (characteristic function) of $[-1,+1]$ and the domain of integration as $t$ varies in $mathbb{R}$, as shown in the picture below for $t>0$:
edited Dec 27 '18 at 18:18
answered Dec 26 '18 at 18:33
Daniele TampieriDaniele Tampieri
2,68721022
2,68721022
$begingroup$
For future readers, this is also a correct answer. Thank you Daniele.
$endgroup$
– Sam Farjamirad
Dec 29 '18 at 9:38
1
$begingroup$
Thanks @SamFarjamirad. I am glad to be of some help.
$endgroup$
– Daniele Tampieri
Dec 29 '18 at 10:03
add a comment |
$begingroup$
For future readers, this is also a correct answer. Thank you Daniele.
$endgroup$
– Sam Farjamirad
Dec 29 '18 at 9:38
1
$begingroup$
Thanks @SamFarjamirad. I am glad to be of some help.
$endgroup$
– Daniele Tampieri
Dec 29 '18 at 10:03
$begingroup$
For future readers, this is also a correct answer. Thank you Daniele.
$endgroup$
– Sam Farjamirad
Dec 29 '18 at 9:38
$begingroup$
For future readers, this is also a correct answer. Thank you Daniele.
$endgroup$
– Sam Farjamirad
Dec 29 '18 at 9:38
1
1
$begingroup$
Thanks @SamFarjamirad. I am glad to be of some help.
$endgroup$
– Daniele Tampieri
Dec 29 '18 at 10:03
$begingroup$
Thanks @SamFarjamirad. I am glad to be of some help.
$endgroup$
– Daniele Tampieri
Dec 29 '18 at 10:03
add a comment |
$begingroup$
Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
$$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
begin{multline*}
=int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
end{multline*}
First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$
$$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$
If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$
Otherwise:
$$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$
$endgroup$
add a comment |
$begingroup$
Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
$$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
begin{multline*}
=int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
end{multline*}
First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$
$$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$
If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$
Otherwise:
$$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$
$endgroup$
add a comment |
$begingroup$
Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
$$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
begin{multline*}
=int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
end{multline*}
First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$
$$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$
If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$
Otherwise:
$$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$
$endgroup$
Let $f(t) = int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau$
$$ int_{-infty}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau =$$
begin{multline*}
=int_{-infty}^{-frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau + \ + int_{frac{1}{2}}^{infty} H(frac{1}{2}-t) H_frac{1}{2}(tau)H_1(t-tau) dtau
end{multline*}
First and third integral equal to zero, because $H_{frac{1}{2}}(tau) = 0, tau in (-infty; -dfrac{1}{2}) cup (dfrac{1}{2}; infty)$
$$f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H(frac{1}{2}-t)H_1(t-tau) dtau$$
If ($dfrac{1}{2} - t) < 0 text{, or } t > dfrac{1}{2} Rightarrow H(frac{1}{2}-t) = 0 Rightarrow f(t) = 0$
Otherwise:
$$ f(t) = int_{-frac{1}{2}}^{frac{1}{2}} H_1(t-tau) dtauqquad t in [dfrac{1}{2}; infty)$$
edited Dec 26 '18 at 18:29
answered Dec 26 '18 at 18:23
KotSmileKotSmile
316
316
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053084%2fhow-to-integrate-moving-heaviside-block%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@YoungMath to be honest no it ain't obvious to me, i added a photo to my original post.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 16:57
$begingroup$
In your code, you seem to integrate w.r.t. $t$, but in your formula you integrate w.r.t. $tau.$ Which one should it be?
$endgroup$
– md2perpe
Dec 26 '18 at 17:25
$begingroup$
@md2perpe I edited the code, sorry for the confusion.
$endgroup$
– Sam Farjamirad
Dec 26 '18 at 17:38
1
$begingroup$
Should the first factor then be $H(frac12-tau)$ instead of $H(frac12-t)$?
$endgroup$
– md2perpe
Dec 26 '18 at 18:34