Integration of secant












16












$begingroup$


$$begin{align}
int sec x , dx
&= int cos x left( frac{1}{cos^2x} right) , dx \
&= int cos x left( frac{1}{1-sin^2x} right) , dx \
& = intcos xcdotfrac{1}{1-frac{1-cos2x}{2}} , dx \
&= int cos x cdotfrac{2}{1+cos2x} , dx
end{align}$$



I am stuck in here. Any help to integrate secant?










share|cite|improve this question











$endgroup$








  • 6




    $begingroup$
    If all else fails, try $t=tan(x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jun 29 '17 at 15:15






  • 3




    $begingroup$
    en.wikipedia.org/wiki/Integral_of_the_secant_function
    $endgroup$
    – lab bhattacharjee
    Jun 29 '17 at 15:15










  • $begingroup$
    See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
    $endgroup$
    – Martin Sleziak
    Jun 30 '17 at 5:37






  • 1




    $begingroup$
    Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
    $endgroup$
    – Devashish Kaushik
    Feb 15 at 12:34
















16












$begingroup$


$$begin{align}
int sec x , dx
&= int cos x left( frac{1}{cos^2x} right) , dx \
&= int cos x left( frac{1}{1-sin^2x} right) , dx \
& = intcos xcdotfrac{1}{1-frac{1-cos2x}{2}} , dx \
&= int cos x cdotfrac{2}{1+cos2x} , dx
end{align}$$



I am stuck in here. Any help to integrate secant?










share|cite|improve this question











$endgroup$








  • 6




    $begingroup$
    If all else fails, try $t=tan(x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jun 29 '17 at 15:15






  • 3




    $begingroup$
    en.wikipedia.org/wiki/Integral_of_the_secant_function
    $endgroup$
    – lab bhattacharjee
    Jun 29 '17 at 15:15










  • $begingroup$
    See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
    $endgroup$
    – Martin Sleziak
    Jun 30 '17 at 5:37






  • 1




    $begingroup$
    Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
    $endgroup$
    – Devashish Kaushik
    Feb 15 at 12:34














16












16








16


2



$begingroup$


$$begin{align}
int sec x , dx
&= int cos x left( frac{1}{cos^2x} right) , dx \
&= int cos x left( frac{1}{1-sin^2x} right) , dx \
& = intcos xcdotfrac{1}{1-frac{1-cos2x}{2}} , dx \
&= int cos x cdotfrac{2}{1+cos2x} , dx
end{align}$$



I am stuck in here. Any help to integrate secant?










share|cite|improve this question











$endgroup$




$$begin{align}
int sec x , dx
&= int cos x left( frac{1}{cos^2x} right) , dx \
&= int cos x left( frac{1}{1-sin^2x} right) , dx \
& = intcos xcdotfrac{1}{1-frac{1-cos2x}{2}} , dx \
&= int cos x cdotfrac{2}{1+cos2x} , dx
end{align}$$



I am stuck in here. Any help to integrate secant?







calculus integration indefinite-integrals trigonometric-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 3 '17 at 14:02









Rodrigo de Azevedo

13.2k41962




13.2k41962










asked Jun 29 '17 at 15:13









BeverlieBeverlie

1,183323




1,183323








  • 6




    $begingroup$
    If all else fails, try $t=tan(x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jun 29 '17 at 15:15






  • 3




    $begingroup$
    en.wikipedia.org/wiki/Integral_of_the_secant_function
    $endgroup$
    – lab bhattacharjee
    Jun 29 '17 at 15:15










  • $begingroup$
    See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
    $endgroup$
    – Martin Sleziak
    Jun 30 '17 at 5:37






  • 1




    $begingroup$
    Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
    $endgroup$
    – Devashish Kaushik
    Feb 15 at 12:34














  • 6




    $begingroup$
    If all else fails, try $t=tan(x/2)$.
    $endgroup$
    – Lord Shark the Unknown
    Jun 29 '17 at 15:15






  • 3




    $begingroup$
    en.wikipedia.org/wiki/Integral_of_the_secant_function
    $endgroup$
    – lab bhattacharjee
    Jun 29 '17 at 15:15










  • $begingroup$
    See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
    $endgroup$
    – Martin Sleziak
    Jun 30 '17 at 5:37






  • 1




    $begingroup$
    Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
    $endgroup$
    – Devashish Kaushik
    Feb 15 at 12:34








6




6




$begingroup$
If all else fails, try $t=tan(x/2)$.
$endgroup$
– Lord Shark the Unknown
Jun 29 '17 at 15:15




$begingroup$
If all else fails, try $t=tan(x/2)$.
$endgroup$
– Lord Shark the Unknown
Jun 29 '17 at 15:15




3




3




$begingroup$
en.wikipedia.org/wiki/Integral_of_the_secant_function
$endgroup$
– lab bhattacharjee
Jun 29 '17 at 15:15




$begingroup$
en.wikipedia.org/wiki/Integral_of_the_secant_function
$endgroup$
– lab bhattacharjee
Jun 29 '17 at 15:15












$begingroup$
See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
$endgroup$
– Martin Sleziak
Jun 30 '17 at 5:37




$begingroup$
See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
$endgroup$
– Martin Sleziak
Jun 30 '17 at 5:37




1




1




$begingroup$
Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
$endgroup$
– Devashish Kaushik
Feb 15 at 12:34




$begingroup$
Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
$endgroup$
– Devashish Kaushik
Feb 15 at 12:34










5 Answers
5






active

oldest

votes


















34












$begingroup$

begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    What a tricky..! Thx
    $endgroup$
    – Beverlie
    Jun 29 '17 at 15:25






  • 2




    $begingroup$
    I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
    $endgroup$
    – DanielWainfleet
    Aug 3 '17 at 17:56






  • 3




    $begingroup$
    @DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
    $endgroup$
    – José Carlos Santos
    Aug 3 '17 at 17:59



















14












$begingroup$

An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:



$$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$



Not obvious, though it is efficient.






share|cite|improve this answer











$endgroup$





















    12












    $begingroup$

    After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.



    Edit:



    $$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$



    And use, $int frac{1}{u},du = ln|u|$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I'd got $int frac{1}{1-u^2}du$ what would be the next step?
      $endgroup$
      – Beverlie
      Jun 29 '17 at 15:22












    • $begingroup$
      Use partial fraction method as in my edit.
      $endgroup$
      – Dhruv Kohli - expiTTp1z0
      Jun 29 '17 at 15:26



















    11












    $begingroup$


    Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.




    We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have



    $$begin{align}
    int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
    &=int frac{2e^{ix}}{1+e^{i2x}},dx \\
    &=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
    &=-i2 arctan(e^{ix})+Ctag 1\\
    &=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
    &=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
    &=log(sec(x)+tan(x))+C'tag4
    end{align}$$





    NOTES:



    In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $



    In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used



    $$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$



    Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.






    share|cite|improve this answer











    $endgroup$





















      0












      $begingroup$

      Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).






      share|cite|improve this answer









      $endgroup$














        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2340800%2fintegration-of-secant%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        34












        $begingroup$

        begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
        Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          What a tricky..! Thx
          $endgroup$
          – Beverlie
          Jun 29 '17 at 15:25






        • 2




          $begingroup$
          I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
          $endgroup$
          – DanielWainfleet
          Aug 3 '17 at 17:56






        • 3




          $begingroup$
          @DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
          $endgroup$
          – José Carlos Santos
          Aug 3 '17 at 17:59
















        34












        $begingroup$

        begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
        Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          What a tricky..! Thx
          $endgroup$
          – Beverlie
          Jun 29 '17 at 15:25






        • 2




          $begingroup$
          I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
          $endgroup$
          – DanielWainfleet
          Aug 3 '17 at 17:56






        • 3




          $begingroup$
          @DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
          $endgroup$
          – José Carlos Santos
          Aug 3 '17 at 17:59














        34












        34








        34





        $begingroup$

        begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
        Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}






        share|cite|improve this answer











        $endgroup$



        begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
        Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Feb 13 at 23:56

























        answered Jun 29 '17 at 15:23









        José Carlos SantosJosé Carlos Santos

        177k24139251




        177k24139251












        • $begingroup$
          What a tricky..! Thx
          $endgroup$
          – Beverlie
          Jun 29 '17 at 15:25






        • 2




          $begingroup$
          I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
          $endgroup$
          – DanielWainfleet
          Aug 3 '17 at 17:56






        • 3




          $begingroup$
          @DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
          $endgroup$
          – José Carlos Santos
          Aug 3 '17 at 17:59


















        • $begingroup$
          What a tricky..! Thx
          $endgroup$
          – Beverlie
          Jun 29 '17 at 15:25






        • 2




          $begingroup$
          I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
          $endgroup$
          – DanielWainfleet
          Aug 3 '17 at 17:56






        • 3




          $begingroup$
          @DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
          $endgroup$
          – José Carlos Santos
          Aug 3 '17 at 17:59
















        $begingroup$
        What a tricky..! Thx
        $endgroup$
        – Beverlie
        Jun 29 '17 at 15:25




        $begingroup$
        What a tricky..! Thx
        $endgroup$
        – Beverlie
        Jun 29 '17 at 15:25




        2




        2




        $begingroup$
        I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
        $endgroup$
        – DanielWainfleet
        Aug 3 '17 at 17:56




        $begingroup$
        I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
        $endgroup$
        – DanielWainfleet
        Aug 3 '17 at 17:56




        3




        3




        $begingroup$
        @DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
        $endgroup$
        – José Carlos Santos
        Aug 3 '17 at 17:59




        $begingroup$
        @DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
        $endgroup$
        – José Carlos Santos
        Aug 3 '17 at 17:59











        14












        $begingroup$

        An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:



        $$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$



        Not obvious, though it is efficient.






        share|cite|improve this answer











        $endgroup$


















          14












          $begingroup$

          An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:



          $$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$



          Not obvious, though it is efficient.






          share|cite|improve this answer











          $endgroup$
















            14












            14








            14





            $begingroup$

            An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:



            $$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$



            Not obvious, though it is efficient.






            share|cite|improve this answer











            $endgroup$



            An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:



            $$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$



            Not obvious, though it is efficient.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jun 29 '17 at 15:26

























            answered Jun 29 '17 at 15:18









            projectilemotionprojectilemotion

            11.4k62241




            11.4k62241























                12












                $begingroup$

                After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.



                Edit:



                $$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$



                And use, $int frac{1}{u},du = ln|u|$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  I'd got $int frac{1}{1-u^2}du$ what would be the next step?
                  $endgroup$
                  – Beverlie
                  Jun 29 '17 at 15:22












                • $begingroup$
                  Use partial fraction method as in my edit.
                  $endgroup$
                  – Dhruv Kohli - expiTTp1z0
                  Jun 29 '17 at 15:26
















                12












                $begingroup$

                After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.



                Edit:



                $$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$



                And use, $int frac{1}{u},du = ln|u|$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  I'd got $int frac{1}{1-u^2}du$ what would be the next step?
                  $endgroup$
                  – Beverlie
                  Jun 29 '17 at 15:22












                • $begingroup$
                  Use partial fraction method as in my edit.
                  $endgroup$
                  – Dhruv Kohli - expiTTp1z0
                  Jun 29 '17 at 15:26














                12












                12








                12





                $begingroup$

                After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.



                Edit:



                $$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$



                And use, $int frac{1}{u},du = ln|u|$






                share|cite|improve this answer











                $endgroup$



                After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.



                Edit:



                $$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$



                And use, $int frac{1}{u},du = ln|u|$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Oct 14 '17 at 18:18









                Michael Hardy

                1




                1










                answered Jun 29 '17 at 15:15









                Dhruv Kohli - expiTTp1z0Dhruv Kohli - expiTTp1z0

                4,712921




                4,712921












                • $begingroup$
                  I'd got $int frac{1}{1-u^2}du$ what would be the next step?
                  $endgroup$
                  – Beverlie
                  Jun 29 '17 at 15:22












                • $begingroup$
                  Use partial fraction method as in my edit.
                  $endgroup$
                  – Dhruv Kohli - expiTTp1z0
                  Jun 29 '17 at 15:26


















                • $begingroup$
                  I'd got $int frac{1}{1-u^2}du$ what would be the next step?
                  $endgroup$
                  – Beverlie
                  Jun 29 '17 at 15:22












                • $begingroup$
                  Use partial fraction method as in my edit.
                  $endgroup$
                  – Dhruv Kohli - expiTTp1z0
                  Jun 29 '17 at 15:26
















                $begingroup$
                I'd got $int frac{1}{1-u^2}du$ what would be the next step?
                $endgroup$
                – Beverlie
                Jun 29 '17 at 15:22






                $begingroup$
                I'd got $int frac{1}{1-u^2}du$ what would be the next step?
                $endgroup$
                – Beverlie
                Jun 29 '17 at 15:22














                $begingroup$
                Use partial fraction method as in my edit.
                $endgroup$
                – Dhruv Kohli - expiTTp1z0
                Jun 29 '17 at 15:26




                $begingroup$
                Use partial fraction method as in my edit.
                $endgroup$
                – Dhruv Kohli - expiTTp1z0
                Jun 29 '17 at 15:26











                11












                $begingroup$


                Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.




                We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have



                $$begin{align}
                int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
                &=int frac{2e^{ix}}{1+e^{i2x}},dx \\
                &=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
                &=-i2 arctan(e^{ix})+Ctag 1\\
                &=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
                &=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
                &=log(sec(x)+tan(x))+C'tag4
                end{align}$$





                NOTES:



                In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $



                In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used



                $$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$



                Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.






                share|cite|improve this answer











                $endgroup$


















                  11












                  $begingroup$


                  Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.




                  We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have



                  $$begin{align}
                  int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
                  &=int frac{2e^{ix}}{1+e^{i2x}},dx \\
                  &=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
                  &=-i2 arctan(e^{ix})+Ctag 1\\
                  &=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
                  &=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
                  &=log(sec(x)+tan(x))+C'tag4
                  end{align}$$





                  NOTES:



                  In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $



                  In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used



                  $$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$



                  Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.






                  share|cite|improve this answer











                  $endgroup$
















                    11












                    11








                    11





                    $begingroup$


                    Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.




                    We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have



                    $$begin{align}
                    int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
                    &=int frac{2e^{ix}}{1+e^{i2x}},dx \\
                    &=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
                    &=-i2 arctan(e^{ix})+Ctag 1\\
                    &=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
                    &=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
                    &=log(sec(x)+tan(x))+C'tag4
                    end{align}$$





                    NOTES:



                    In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $



                    In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used



                    $$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$



                    Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.






                    share|cite|improve this answer











                    $endgroup$




                    Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.




                    We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have



                    $$begin{align}
                    int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
                    &=int frac{2e^{ix}}{1+e^{i2x}},dx \\
                    &=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
                    &=-i2 arctan(e^{ix})+Ctag 1\\
                    &=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
                    &=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
                    &=log(sec(x)+tan(x))+C'tag4
                    end{align}$$





                    NOTES:



                    In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $



                    In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used



                    $$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$



                    Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jul 17 '17 at 21:05









                    José Carlos Santos

                    177k24139251




                    177k24139251










                    answered Jun 29 '17 at 17:24









                    Mark ViolaMark Viola

                    134k1278177




                    134k1278177























                        0












                        $begingroup$

                        Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).






                            share|cite|improve this answer









                            $endgroup$



                            Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 30 '18 at 20:38









                            J.G.J.G.

                            34.4k23252




                            34.4k23252






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2340800%2fintegration-of-secant%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Bundesstraße 106

                                Verónica Boquete

                                Ida-Boy-Ed-Garten