Integration of secant
$begingroup$
$$begin{align}
int sec x , dx
&= int cos x left( frac{1}{cos^2x} right) , dx \
&= int cos x left( frac{1}{1-sin^2x} right) , dx \
& = intcos xcdotfrac{1}{1-frac{1-cos2x}{2}} , dx \
&= int cos x cdotfrac{2}{1+cos2x} , dx
end{align}$$
I am stuck in here. Any help to integrate secant?
calculus integration indefinite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
$$begin{align}
int sec x , dx
&= int cos x left( frac{1}{cos^2x} right) , dx \
&= int cos x left( frac{1}{1-sin^2x} right) , dx \
& = intcos xcdotfrac{1}{1-frac{1-cos2x}{2}} , dx \
&= int cos x cdotfrac{2}{1+cos2x} , dx
end{align}$$
I am stuck in here. Any help to integrate secant?
calculus integration indefinite-integrals trigonometric-integrals
$endgroup$
6
$begingroup$
If all else fails, try $t=tan(x/2)$.
$endgroup$
– Lord Shark the Unknown
Jun 29 '17 at 15:15
3
$begingroup$
en.wikipedia.org/wiki/Integral_of_the_secant_function
$endgroup$
– lab bhattacharjee
Jun 29 '17 at 15:15
$begingroup$
See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
$endgroup$
– Martin Sleziak
Jun 30 '17 at 5:37
1
$begingroup$
Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
$endgroup$
– Devashish Kaushik
Feb 15 at 12:34
add a comment |
$begingroup$
$$begin{align}
int sec x , dx
&= int cos x left( frac{1}{cos^2x} right) , dx \
&= int cos x left( frac{1}{1-sin^2x} right) , dx \
& = intcos xcdotfrac{1}{1-frac{1-cos2x}{2}} , dx \
&= int cos x cdotfrac{2}{1+cos2x} , dx
end{align}$$
I am stuck in here. Any help to integrate secant?
calculus integration indefinite-integrals trigonometric-integrals
$endgroup$
$$begin{align}
int sec x , dx
&= int cos x left( frac{1}{cos^2x} right) , dx \
&= int cos x left( frac{1}{1-sin^2x} right) , dx \
& = intcos xcdotfrac{1}{1-frac{1-cos2x}{2}} , dx \
&= int cos x cdotfrac{2}{1+cos2x} , dx
end{align}$$
I am stuck in here. Any help to integrate secant?
calculus integration indefinite-integrals trigonometric-integrals
calculus integration indefinite-integrals trigonometric-integrals
edited Aug 3 '17 at 14:02
Rodrigo de Azevedo
13.2k41962
13.2k41962
asked Jun 29 '17 at 15:13
BeverlieBeverlie
1,183323
1,183323
6
$begingroup$
If all else fails, try $t=tan(x/2)$.
$endgroup$
– Lord Shark the Unknown
Jun 29 '17 at 15:15
3
$begingroup$
en.wikipedia.org/wiki/Integral_of_the_secant_function
$endgroup$
– lab bhattacharjee
Jun 29 '17 at 15:15
$begingroup$
See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
$endgroup$
– Martin Sleziak
Jun 30 '17 at 5:37
1
$begingroup$
Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
$endgroup$
– Devashish Kaushik
Feb 15 at 12:34
add a comment |
6
$begingroup$
If all else fails, try $t=tan(x/2)$.
$endgroup$
– Lord Shark the Unknown
Jun 29 '17 at 15:15
3
$begingroup$
en.wikipedia.org/wiki/Integral_of_the_secant_function
$endgroup$
– lab bhattacharjee
Jun 29 '17 at 15:15
$begingroup$
See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
$endgroup$
– Martin Sleziak
Jun 30 '17 at 5:37
1
$begingroup$
Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
$endgroup$
– Devashish Kaushik
Feb 15 at 12:34
6
6
$begingroup$
If all else fails, try $t=tan(x/2)$.
$endgroup$
– Lord Shark the Unknown
Jun 29 '17 at 15:15
$begingroup$
If all else fails, try $t=tan(x/2)$.
$endgroup$
– Lord Shark the Unknown
Jun 29 '17 at 15:15
3
3
$begingroup$
en.wikipedia.org/wiki/Integral_of_the_secant_function
$endgroup$
– lab bhattacharjee
Jun 29 '17 at 15:15
$begingroup$
en.wikipedia.org/wiki/Integral_of_the_secant_function
$endgroup$
– lab bhattacharjee
Jun 29 '17 at 15:15
$begingroup$
See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
$endgroup$
– Martin Sleziak
Jun 30 '17 at 5:37
$begingroup$
See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
$endgroup$
– Martin Sleziak
Jun 30 '17 at 5:37
1
1
$begingroup$
Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
$endgroup$
– Devashish Kaushik
Feb 15 at 12:34
$begingroup$
Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
$endgroup$
– Devashish Kaushik
Feb 15 at 12:34
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}
$endgroup$
$begingroup$
What a tricky..! Thx
$endgroup$
– Beverlie
Jun 29 '17 at 15:25
2
$begingroup$
I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
$endgroup$
– DanielWainfleet
Aug 3 '17 at 17:56
3
$begingroup$
@DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
$endgroup$
– José Carlos Santos
Aug 3 '17 at 17:59
add a comment |
$begingroup$
An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:
$$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$
Not obvious, though it is efficient.
$endgroup$
add a comment |
$begingroup$
After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.
Edit:
$$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$
And use, $int frac{1}{u},du = ln|u|$
$endgroup$
$begingroup$
I'd got $int frac{1}{1-u^2}du$ what would be the next step?
$endgroup$
– Beverlie
Jun 29 '17 at 15:22
$begingroup$
Use partial fraction method as in my edit.
$endgroup$
– Dhruv Kohli - expiTTp1z0
Jun 29 '17 at 15:26
add a comment |
$begingroup$
Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.
We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have
$$begin{align}
int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
&=int frac{2e^{ix}}{1+e^{i2x}},dx \\
&=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
&=-i2 arctan(e^{ix})+Ctag 1\\
&=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
&=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
&=log(sec(x)+tan(x))+C'tag4
end{align}$$
NOTES:
In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $
In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used
$$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$
Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.
$endgroup$
add a comment |
$begingroup$
Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2340800%2fintegration-of-secant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}
$endgroup$
$begingroup$
What a tricky..! Thx
$endgroup$
– Beverlie
Jun 29 '17 at 15:25
2
$begingroup$
I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
$endgroup$
– DanielWainfleet
Aug 3 '17 at 17:56
3
$begingroup$
@DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
$endgroup$
– José Carlos Santos
Aug 3 '17 at 17:59
add a comment |
$begingroup$
begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}
$endgroup$
$begingroup$
What a tricky..! Thx
$endgroup$
– Beverlie
Jun 29 '17 at 15:25
2
$begingroup$
I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
$endgroup$
– DanielWainfleet
Aug 3 '17 at 17:56
3
$begingroup$
@DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
$endgroup$
– José Carlos Santos
Aug 3 '17 at 17:59
add a comment |
$begingroup$
begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}
$endgroup$
begin{align*}intsec x,mathrm dx&=intfrac1{cos x},mathrm dx\&=intfrac{cos x}{cos^2x},mathrm dx\&=intfrac{cos x}{1-sin^2x},mathrm dx.end{align*}
Now, doing $sin x=t$ and $cos x,mathrm dx=mathrm dt$, you get $displaystyleintfrac{mathrm dt}{1-t^2}$. Butbegin{align*}intfrac{mathrm dt}{1-t^2}&=frac12intfrac1{1-t}+frac1{1+t},mathrm dt\&=frac12left(-log|1-t|+log|1+t|right)\&=frac12logleft|frac{1+t}{1-t}right|\&=frac12logleft|frac{(1+t)^2}{1-t^2}right|\&=logleft|frac{1+t}{sqrt{1-t^2}}right|\&=logleft|frac{1+sin x}{sqrt{1-sin^2x}}right|\&=logleft|frac1{cos x}+frac{sin x}{cos x}right|\&=log|sec x+tan x|.end{align*}
edited Feb 13 at 23:56
answered Jun 29 '17 at 15:23
José Carlos SantosJosé Carlos Santos
177k24139251
177k24139251
$begingroup$
What a tricky..! Thx
$endgroup$
– Beverlie
Jun 29 '17 at 15:25
2
$begingroup$
I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
$endgroup$
– DanielWainfleet
Aug 3 '17 at 17:56
3
$begingroup$
@DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
$endgroup$
– José Carlos Santos
Aug 3 '17 at 17:59
add a comment |
$begingroup$
What a tricky..! Thx
$endgroup$
– Beverlie
Jun 29 '17 at 15:25
2
$begingroup$
I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
$endgroup$
– DanielWainfleet
Aug 3 '17 at 17:56
3
$begingroup$
@DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
$endgroup$
– José Carlos Santos
Aug 3 '17 at 17:59
$begingroup$
What a tricky..! Thx
$endgroup$
– Beverlie
Jun 29 '17 at 15:25
$begingroup$
What a tricky..! Thx
$endgroup$
– Beverlie
Jun 29 '17 at 15:25
2
2
$begingroup$
I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
$endgroup$
– DanielWainfleet
Aug 3 '17 at 17:56
$begingroup$
I've been reading about the early history of calculus. For a long period in the 17th century this was a significant unsolved problem.
$endgroup$
– DanielWainfleet
Aug 3 '17 at 17:56
3
3
$begingroup$
@DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
$endgroup$
– José Carlos Santos
Aug 3 '17 at 17:59
$begingroup$
@DanielWainfleet I think I read something about that in the historical notes of Spivak's Calculus.
$endgroup$
– José Carlos Santos
Aug 3 '17 at 17:59
add a comment |
$begingroup$
An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:
$$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$
Not obvious, though it is efficient.
$endgroup$
add a comment |
$begingroup$
An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:
$$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$
Not obvious, though it is efficient.
$endgroup$
add a comment |
$begingroup$
An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:
$$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$
Not obvious, though it is efficient.
$endgroup$
An alternative method: The trick here is to multiply $sec{x}$ by $dfrac{tan{x}+sec{x}}{tan{x}+sec{x}}$, then substitute $u=tan{x}+sec{x}$ and $du=(sec^2{x}+tan{x}sec{x})~dx$:
$$int sec{x}~dx=int sec{x}cdot frac{tan{x}+sec{x}}{tan{x}+sec{x}}~dx=int frac{sec{x}tan{x}+sec^2{x}}{tan{x}+sec{x}}~dx=int frac{1}{u}~du=cdots$$
Not obvious, though it is efficient.
edited Jun 29 '17 at 15:26
answered Jun 29 '17 at 15:18
projectilemotionprojectilemotion
11.4k62241
11.4k62241
add a comment |
add a comment |
$begingroup$
After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.
Edit:
$$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$
And use, $int frac{1}{u},du = ln|u|$
$endgroup$
$begingroup$
I'd got $int frac{1}{1-u^2}du$ what would be the next step?
$endgroup$
– Beverlie
Jun 29 '17 at 15:22
$begingroup$
Use partial fraction method as in my edit.
$endgroup$
– Dhruv Kohli - expiTTp1z0
Jun 29 '17 at 15:26
add a comment |
$begingroup$
After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.
Edit:
$$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$
And use, $int frac{1}{u},du = ln|u|$
$endgroup$
$begingroup$
I'd got $int frac{1}{1-u^2}du$ what would be the next step?
$endgroup$
– Beverlie
Jun 29 '17 at 15:22
$begingroup$
Use partial fraction method as in my edit.
$endgroup$
– Dhruv Kohli - expiTTp1z0
Jun 29 '17 at 15:26
add a comment |
$begingroup$
After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.
Edit:
$$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$
And use, $int frac{1}{u},du = ln|u|$
$endgroup$
After $int cos x left(frac{1}{1-sin^2x}right)dx$ use the transformation $z = sin x$ and $dz = cos x , dx$.
Edit:
$$intfrac{1}{1-u^2},du = frac{1}{2}intfrac{(1+u)+(1-u)}{(1+u)(1-u)} = frac{1}{2} int frac{1}{1+u} + frac{1}{1-u},du$$
And use, $int frac{1}{u},du = ln|u|$
edited Oct 14 '17 at 18:18
Michael Hardy
1
1
answered Jun 29 '17 at 15:15
Dhruv Kohli - expiTTp1z0Dhruv Kohli - expiTTp1z0
4,712921
4,712921
$begingroup$
I'd got $int frac{1}{1-u^2}du$ what would be the next step?
$endgroup$
– Beverlie
Jun 29 '17 at 15:22
$begingroup$
Use partial fraction method as in my edit.
$endgroup$
– Dhruv Kohli - expiTTp1z0
Jun 29 '17 at 15:26
add a comment |
$begingroup$
I'd got $int frac{1}{1-u^2}du$ what would be the next step?
$endgroup$
– Beverlie
Jun 29 '17 at 15:22
$begingroup$
Use partial fraction method as in my edit.
$endgroup$
– Dhruv Kohli - expiTTp1z0
Jun 29 '17 at 15:26
$begingroup$
I'd got $int frac{1}{1-u^2}du$ what would be the next step?
$endgroup$
– Beverlie
Jun 29 '17 at 15:22
$begingroup$
I'd got $int frac{1}{1-u^2}du$ what would be the next step?
$endgroup$
– Beverlie
Jun 29 '17 at 15:22
$begingroup$
Use partial fraction method as in my edit.
$endgroup$
– Dhruv Kohli - expiTTp1z0
Jun 29 '17 at 15:26
$begingroup$
Use partial fraction method as in my edit.
$endgroup$
– Dhruv Kohli - expiTTp1z0
Jun 29 '17 at 15:26
add a comment |
$begingroup$
Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.
We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have
$$begin{align}
int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
&=int frac{2e^{ix}}{1+e^{i2x}},dx \\
&=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
&=-i2 arctan(e^{ix})+Ctag 1\\
&=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
&=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
&=log(sec(x)+tan(x))+C'tag4
end{align}$$
NOTES:
In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $
In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used
$$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$
Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.
$endgroup$
add a comment |
$begingroup$
Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.
We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have
$$begin{align}
int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
&=int frac{2e^{ix}}{1+e^{i2x}},dx \\
&=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
&=-i2 arctan(e^{ix})+Ctag 1\\
&=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
&=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
&=log(sec(x)+tan(x))+C'tag4
end{align}$$
NOTES:
In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $
In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used
$$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$
Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.
$endgroup$
add a comment |
$begingroup$
Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.
We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have
$$begin{align}
int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
&=int frac{2e^{ix}}{1+e^{i2x}},dx \\
&=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
&=-i2 arctan(e^{ix})+Ctag 1\\
&=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
&=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
&=log(sec(x)+tan(x))+C'tag4
end{align}$$
NOTES:
In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $
In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used
$$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$
Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.
$endgroup$
Although the integral can be evaluated in a straightforward way using real analysis, I thought it might be instructive to present an approach based on complex analysis. To that end, we now proceed.
We use Euler's Formula, $e^{ix}=cos(x)+isin(x)$, to write $displaystyle sec(x)=frac2{e^{ix}+e^{-ix}}=frac{2e^{ix}}{1+e^{i2x}}$. Then, we have
$$begin{align}
int sec(x),dx&=int frac2{e^{ix}+e^{-ix}}\\
&=int frac{2e^{ix}}{1+e^{i2x}},dx \\
&=-i2 int frac{1}{1+(e^{ix})^2},d(e^{ix})\\
&=-i2 arctan(e^{ix})+Ctag 1\\
&=logleft(frac{1-ie^{ix}}{1+ie^{ix}}right)+Ctag2\\
&=logleft(-ileft(frac{1+sin(x)}{icos(x)}right)right)+Ctag3\\
&=log(sec(x)+tan(x))+C'tag4
end{align}$$
NOTES:
In going from $(1)$ to $(2)$, we used the identity $arctan(z)=i2logleft(frac{1-iz}{1+iz}right) $
In going from $(2)$ to $(3)$, we multiplied the numerator and denominator of the argument of the logarithm function by $1-ie^{ix}$. Then, we used
$$frac{1-ie^{ix}}{1+ie^{ix}}=frac{-i2cos(x)}{2(1-sin(x))}=-ifrac{1+sin(x)}{cos(x)}$$
Finally, in going from $(3)$ to $(4)$, we absorbed the term $log(-i)$ into the integration constant $C$ and labeled the new integration constant $C'=C+log(-i)$.
edited Jul 17 '17 at 21:05
José Carlos Santos
177k24139251
177k24139251
answered Jun 29 '17 at 17:24
Mark ViolaMark Viola
134k1278177
134k1278177
add a comment |
add a comment |
$begingroup$
Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).
$endgroup$
add a comment |
$begingroup$
Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).
$endgroup$
add a comment |
$begingroup$
Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).
$endgroup$
Just to spell out Lord Shark the Unknown's suggestion, $$t=tanfrac{x}{2}impliessec x=frac{1+t^2}{1-t^2},,dx=frac{2dt}{1+t^2}impliesintsec xdx=intfrac{2 dt}{1-t^2}.$$From that point on, the same partial-fractions treatment as in multiple other answers can be used. Admittedly the expression thus obtained for the antiderivative is $lnleft|frac{1+tanfrac{x}{2}}{1-tanfrac{x}{2}}right|+C$ instead of $lnleft|frac{1+sin x}{1-sin x}right|+C$ or $ln|sec x+tan x|+C$, but of course they're all the same thanks to suitable trigonometric identities (again, obtainable by writing things as functions of $tanfrac{x}{2}$).
answered Dec 30 '18 at 20:38
J.G.J.G.
34.4k23252
34.4k23252
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2340800%2fintegration-of-secant%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
6
$begingroup$
If all else fails, try $t=tan(x/2)$.
$endgroup$
– Lord Shark the Unknown
Jun 29 '17 at 15:15
3
$begingroup$
en.wikipedia.org/wiki/Integral_of_the_secant_function
$endgroup$
– lab bhattacharjee
Jun 29 '17 at 15:15
$begingroup$
See also Ways to evaluate $int sec theta , mathrm d theta$ and other questions linked there. Found using Approach0.
$endgroup$
– Martin Sleziak
Jun 30 '17 at 5:37
1
$begingroup$
Possible duplicate of Ways to evaluate $int sec theta , mathrm d theta$
$endgroup$
– Devashish Kaushik
Feb 15 at 12:34