Relationship between Catalan's constant and $pi$
$begingroup$
How related are $G$ (Catalan's constant) and $pi$?
I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.
Example:
It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$
So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?
really important edit
As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.
Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.
Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$
integration sequences-and-series pi constants
$endgroup$
|
show 3 more comments
$begingroup$
How related are $G$ (Catalan's constant) and $pi$?
I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.
Example:
It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$
So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?
really important edit
As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.
Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.
Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$
integration sequences-and-series pi constants
$endgroup$
1
$begingroup$
Hello. I hope this and this will help you.
$endgroup$
– Rohan
Dec 27 '18 at 8:50
1
$begingroup$
The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:03
$begingroup$
Are you sure that your series is convergent?
$endgroup$
– FDP
Dec 27 '18 at 9:11
$begingroup$
@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
$endgroup$
– clathratus
Dec 27 '18 at 9:14
$begingroup$
@JackD'Aurizio Thank you for that link, it's a fascinating paper!
$endgroup$
– clathratus
Dec 27 '18 at 9:32
|
show 3 more comments
$begingroup$
How related are $G$ (Catalan's constant) and $pi$?
I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.
Example:
It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$
So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?
really important edit
As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.
Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.
Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$
integration sequences-and-series pi constants
$endgroup$
How related are $G$ (Catalan's constant) and $pi$?
I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.
Example:
It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$
So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?
really important edit
As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.
Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.
Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$
integration sequences-and-series pi constants
integration sequences-and-series pi constants
edited Dec 29 '18 at 21:49
clathratus
asked Dec 27 '18 at 8:45
clathratusclathratus
5,1141439
5,1141439
1
$begingroup$
Hello. I hope this and this will help you.
$endgroup$
– Rohan
Dec 27 '18 at 8:50
1
$begingroup$
The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:03
$begingroup$
Are you sure that your series is convergent?
$endgroup$
– FDP
Dec 27 '18 at 9:11
$begingroup$
@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
$endgroup$
– clathratus
Dec 27 '18 at 9:14
$begingroup$
@JackD'Aurizio Thank you for that link, it's a fascinating paper!
$endgroup$
– clathratus
Dec 27 '18 at 9:32
|
show 3 more comments
1
$begingroup$
Hello. I hope this and this will help you.
$endgroup$
– Rohan
Dec 27 '18 at 8:50
1
$begingroup$
The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:03
$begingroup$
Are you sure that your series is convergent?
$endgroup$
– FDP
Dec 27 '18 at 9:11
$begingroup$
@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
$endgroup$
– clathratus
Dec 27 '18 at 9:14
$begingroup$
@JackD'Aurizio Thank you for that link, it's a fascinating paper!
$endgroup$
– clathratus
Dec 27 '18 at 9:32
1
1
$begingroup$
Hello. I hope this and this will help you.
$endgroup$
– Rohan
Dec 27 '18 at 8:50
$begingroup$
Hello. I hope this and this will help you.
$endgroup$
– Rohan
Dec 27 '18 at 8:50
1
1
$begingroup$
The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:03
$begingroup$
The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:03
$begingroup$
Are you sure that your series is convergent?
$endgroup$
– FDP
Dec 27 '18 at 9:11
$begingroup$
Are you sure that your series is convergent?
$endgroup$
– FDP
Dec 27 '18 at 9:11
$begingroup$
@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
$endgroup$
– clathratus
Dec 27 '18 at 9:14
$begingroup$
@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
$endgroup$
– clathratus
Dec 27 '18 at 9:14
$begingroup$
@JackD'Aurizio Thank you for that link, it's a fascinating paper!
$endgroup$
– clathratus
Dec 27 '18 at 9:32
$begingroup$
@JackD'Aurizio Thank you for that link, it's a fascinating paper!
$endgroup$
– clathratus
Dec 27 '18 at 9:32
|
show 3 more comments
5 Answers
5
active
oldest
votes
$begingroup$
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}
(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )
From the same source,
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}
ADDENDUM:
Proof for (1),
It is well known that for $ngeq 0$ integer,
begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}
(Wallis formula)
Therefore for $ngeq 0$ integer,
begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}
therefore,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}
Perform the change of variable $u=tan x$,$v=tan y$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}
Perform the change of variable $y=arctan x$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}
Perform the change of variable $y=frac{x}{2}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}
Therefore,
begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}
$endgroup$
$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23
add a comment |
$begingroup$
As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$
$endgroup$
$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00
1
$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03
1
$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05
add a comment |
$begingroup$
Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.
This approach is powerful enough to let you compute much worse.
$endgroup$
$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58
$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05
1
$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07
add a comment |
$begingroup$
For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$
$endgroup$
1
$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26
1
$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33
add a comment |
$begingroup$
Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch
A nice coincidence:
begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}
and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}
Series:
begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}
A series obtained by Ramanujan:
begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}
Integrals:
begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}
$endgroup$
$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11
1
$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053715%2frelationship-between-catalans-constant-and-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}
(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )
From the same source,
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}
ADDENDUM:
Proof for (1),
It is well known that for $ngeq 0$ integer,
begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}
(Wallis formula)
Therefore for $ngeq 0$ integer,
begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}
therefore,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}
Perform the change of variable $u=tan x$,$v=tan y$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}
Perform the change of variable $y=arctan x$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}
Perform the change of variable $y=frac{x}{2}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}
Therefore,
begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}
$endgroup$
$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23
add a comment |
$begingroup$
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}
(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )
From the same source,
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}
ADDENDUM:
Proof for (1),
It is well known that for $ngeq 0$ integer,
begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}
(Wallis formula)
Therefore for $ngeq 0$ integer,
begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}
therefore,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}
Perform the change of variable $u=tan x$,$v=tan y$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}
Perform the change of variable $y=arctan x$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}
Perform the change of variable $y=frac{x}{2}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}
Therefore,
begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}
$endgroup$
$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23
add a comment |
$begingroup$
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}
(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )
From the same source,
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}
ADDENDUM:
Proof for (1),
It is well known that for $ngeq 0$ integer,
begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}
(Wallis formula)
Therefore for $ngeq 0$ integer,
begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}
therefore,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}
Perform the change of variable $u=tan x$,$v=tan y$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}
Perform the change of variable $y=arctan x$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}
Perform the change of variable $y=frac{x}{2}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}
Therefore,
begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}
$endgroup$
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}
(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )
From the same source,
begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}
ADDENDUM:
Proof for (1),
It is well known that for $ngeq 0$ integer,
begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}
(Wallis formula)
Therefore for $ngeq 0$ integer,
begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}
therefore,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}
Perform the change of variable $u=tan x$,$v=tan y$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}
Perform the change of variable $y=arctan x$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}
Perform the change of variable $y=frac{x}{2}$,
begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}
Therefore,
begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}
edited Dec 27 '18 at 18:54
answered Dec 27 '18 at 9:36
FDPFDP
6,13211929
6,13211929
$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23
add a comment |
$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23
$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23
$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23
add a comment |
$begingroup$
As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$
$endgroup$
$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00
1
$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03
1
$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05
add a comment |
$begingroup$
As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$
$endgroup$
$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00
1
$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03
1
$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05
add a comment |
$begingroup$
As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$
$endgroup$
As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$
edited Dec 27 '18 at 9:05
answered Dec 27 '18 at 8:54
TheSimpliFireTheSimpliFire
13.2k62464
13.2k62464
$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00
1
$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03
1
$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05
add a comment |
$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00
1
$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03
1
$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05
$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00
$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00
1
1
$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03
$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03
1
1
$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05
$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05
add a comment |
$begingroup$
Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.
This approach is powerful enough to let you compute much worse.
$endgroup$
$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58
$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05
1
$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07
add a comment |
$begingroup$
Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.
This approach is powerful enough to let you compute much worse.
$endgroup$
$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58
$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05
1
$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07
add a comment |
$begingroup$
Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.
This approach is powerful enough to let you compute much worse.
$endgroup$
Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.
This approach is powerful enough to let you compute much worse.
edited Dec 27 '18 at 10:31
answered Dec 27 '18 at 10:25
Jack D'AurizioJack D'Aurizio
292k33284673
292k33284673
$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58
$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05
1
$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07
add a comment |
$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58
$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05
1
$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07
$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58
$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58
$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05
$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05
1
1
$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07
$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07
add a comment |
$begingroup$
For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$
$endgroup$
1
$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26
1
$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33
add a comment |
$begingroup$
For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$
$endgroup$
1
$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26
1
$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33
add a comment |
$begingroup$
For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$
$endgroup$
For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$
answered Dec 27 '18 at 10:56
ZackyZacky
7,87511062
7,87511062
1
$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26
1
$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33
add a comment |
1
$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26
1
$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33
1
1
$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26
$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26
1
1
$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33
$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33
add a comment |
$begingroup$
Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch
A nice coincidence:
begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}
and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}
Series:
begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}
A series obtained by Ramanujan:
begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}
Integrals:
begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}
$endgroup$
$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11
1
$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13
add a comment |
$begingroup$
Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch
A nice coincidence:
begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}
and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}
Series:
begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}
A series obtained by Ramanujan:
begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}
Integrals:
begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}
$endgroup$
$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11
1
$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13
add a comment |
$begingroup$
Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch
A nice coincidence:
begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}
and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}
Series:
begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}
A series obtained by Ramanujan:
begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}
Integrals:
begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}
$endgroup$
Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch
A nice coincidence:
begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}
and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}
Series:
begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}
A series obtained by Ramanujan:
begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}
Integrals:
begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}
answered Dec 27 '18 at 14:46
Markus ScheuerMarkus Scheuer
64.2k460152
64.2k460152
$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11
1
$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13
add a comment |
$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11
1
$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13
$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11
$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11
1
1
$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13
$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053715%2frelationship-between-catalans-constant-and-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hello. I hope this and this will help you.
$endgroup$
– Rohan
Dec 27 '18 at 8:50
1
$begingroup$
The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:03
$begingroup$
Are you sure that your series is convergent?
$endgroup$
– FDP
Dec 27 '18 at 9:11
$begingroup$
@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
$endgroup$
– clathratus
Dec 27 '18 at 9:14
$begingroup$
@JackD'Aurizio Thank you for that link, it's a fascinating paper!
$endgroup$
– clathratus
Dec 27 '18 at 9:32