Relationship between Catalan's constant and $pi$












14












$begingroup$


How related are $G$ (Catalan's constant) and $pi$?



I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.



Example:



It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$

So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$



So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?



really important edit



As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.



Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.



Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hello. I hope this and this will help you.
    $endgroup$
    – Rohan
    Dec 27 '18 at 8:50






  • 1




    $begingroup$
    The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:03










  • $begingroup$
    Are you sure that your series is convergent?
    $endgroup$
    – FDP
    Dec 27 '18 at 9:11










  • $begingroup$
    @FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:14










  • $begingroup$
    @JackD'Aurizio Thank you for that link, it's a fascinating paper!
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:32
















14












$begingroup$


How related are $G$ (Catalan's constant) and $pi$?



I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.



Example:



It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$

So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$



So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?



really important edit



As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.



Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.



Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hello. I hope this and this will help you.
    $endgroup$
    – Rohan
    Dec 27 '18 at 8:50






  • 1




    $begingroup$
    The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:03










  • $begingroup$
    Are you sure that your series is convergent?
    $endgroup$
    – FDP
    Dec 27 '18 at 9:11










  • $begingroup$
    @FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:14










  • $begingroup$
    @JackD'Aurizio Thank you for that link, it's a fascinating paper!
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:32














14












14








14


4



$begingroup$


How related are $G$ (Catalan's constant) and $pi$?



I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.



Example:



It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$

So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$



So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?



really important edit



As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.



Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.



Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$










share|cite|improve this question











$endgroup$




How related are $G$ (Catalan's constant) and $pi$?



I seem to encounter $G$ a lot when computing definite integrals involving logarithms and trig functions.



Example:



It is well known that
$$G=int_0^{pi/4}logcot x,mathrm{d}x$$
So we see that
$$G=int_0^{pi/4}logsin(x+pi/2),mathrm{d}x-int_0^{pi/4}logsin x,mathrm{d}x$$
So we set out on the evaluation of
$$L(phi)=int_0^philogsin x,mathrm{d}x,qquad phiin(0,pi)$$
we recall that
$$sin x=xprod_{ngeq1}frac{pi^2n^2-x^2}{pi^2n^2}$$
Applying $log$ on both sides,
$$logsin x=log x+sum_{ngeq1}logfrac{pi^2n^2-x^2}{pi^2n^2}$$
integrating both sides from $0$ to $phi$,
$$L(phi)=phi(logphi-3)+sum_{ngeq1}philogfrac{pi^2n^2-phi^2}{pi^2n^2}+pi nlogfrac{pi n+phi}{pi n-phi}$$
With the substitution $u=x+pi/2$,
$$
begin{align}
int_0^phi logcos x,mathrm{d}x=&int_0^{phi}logsin(x+pi/2),mathrm{d}x\
=&int_{pi/2}^{phi+pi/2}logsin x,mathrm{d}x\
=&int_{0}^{phi+pi/2}logsin x,mathrm{d}x-int_{0}^{pi/2}logsin x,mathrm{d}x\
=&L(phi+pi/2)+fracpi2log2
end{align}
$$

So
$$G=Lbigg(frac{3pi}4bigg)-Lbigg(fracpi4bigg)+fracpi2log2$$
And after a lot of algebra,
$$G=fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$



So yeah I guess I found a series for $G$ in terms of $pi$, but are there any other sort of these representations of $G$ in terms of $pi$?



really important edit



As it turns out, the series
$$fracpi4bigg(logfrac{27pi^2}{16}+2log2-6bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg]$$
does not converge, however it is a simple fix, and the series
$$G=fracpi4bigg(logfrac{3pisqrt{3}}2-1bigg)+pisum_{ngeq1}bigg[frac14logfrac{(16n^2-9)^3}{256n^4(16n^2-1)}+nlogfrac{(4n+3)(4n-1)}{(4n-3)(4n+1)}-1bigg]$$
does converge to $G$.



Quite amazingly, we can use this to find a really neat infinite product identity. Here's how.



Using the rules of exponents and logarithms, we may see that
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=sum_{ngeq1}logbigg[frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then using the fact that
$$logprod_{i}a_i=sum_{i}log a_i$$
We have
$$frac{G}pi+frac12-logbigg(3^{3/4}sqrt{fracpi2}bigg)=logbigg[prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^nbigg]$$
Then taking $exp$ on both sides,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2e}{3pisqrt{3}}}e^{G/pi}$$
Or perhaps more aesthetically,
$$prod_{ngeq1}frac1{4en}bigg(frac{(16n^2-9)^3}{16n^2-1}bigg)^{1/4}bigg(frac{(4n+3)(4n-1)}{(4n-3)(4n+1)}bigg)^n=sqrt{frac{2}{3pisqrt{3}}}expbigg(frac{G}{pi}+frac12bigg)$$







integration sequences-and-series pi constants






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 21:49







clathratus

















asked Dec 27 '18 at 8:45









clathratusclathratus

5,1141439




5,1141439








  • 1




    $begingroup$
    Hello. I hope this and this will help you.
    $endgroup$
    – Rohan
    Dec 27 '18 at 8:50






  • 1




    $begingroup$
    The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:03










  • $begingroup$
    Are you sure that your series is convergent?
    $endgroup$
    – FDP
    Dec 27 '18 at 9:11










  • $begingroup$
    @FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:14










  • $begingroup$
    @JackD'Aurizio Thank you for that link, it's a fascinating paper!
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:32














  • 1




    $begingroup$
    Hello. I hope this and this will help you.
    $endgroup$
    – Rohan
    Dec 27 '18 at 8:50






  • 1




    $begingroup$
    The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:03










  • $begingroup$
    Are you sure that your series is convergent?
    $endgroup$
    – FDP
    Dec 27 '18 at 9:11










  • $begingroup$
    @FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:14










  • $begingroup$
    @JackD'Aurizio Thank you for that link, it's a fascinating paper!
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:32








1




1




$begingroup$
Hello. I hope this and this will help you.
$endgroup$
– Rohan
Dec 27 '18 at 8:50




$begingroup$
Hello. I hope this and this will help you.
$endgroup$
– Rohan
Dec 27 '18 at 8:50




1




1




$begingroup$
The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:03




$begingroup$
The $pi G$ constant appears many times in the explicit evaluation of hypergeometric series at $pm 1$, see for instance arxiv.org/abs/1710.03221
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:03












$begingroup$
Are you sure that your series is convergent?
$endgroup$
– FDP
Dec 27 '18 at 9:11




$begingroup$
Are you sure that your series is convergent?
$endgroup$
– FDP
Dec 27 '18 at 9:11












$begingroup$
@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
$endgroup$
– clathratus
Dec 27 '18 at 9:14




$begingroup$
@FDP I may have made some simplification errors, but I am almost certain that $$G=L(3pi/4)-L(pi/4)+pilogsqrt2$$ See here: desmos.com/calculator/hndn0teed7
$endgroup$
– clathratus
Dec 27 '18 at 9:14












$begingroup$
@JackD'Aurizio Thank you for that link, it's a fascinating paper!
$endgroup$
– clathratus
Dec 27 '18 at 9:32




$begingroup$
@JackD'Aurizio Thank you for that link, it's a fascinating paper!
$endgroup$
– clathratus
Dec 27 '18 at 9:32










5 Answers
5






active

oldest

votes


















13












$begingroup$

begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



From the same source,



begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



ADDENDUM:



Proof for (1),



It is well known that for $ngeq 0$ integer,



begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



(Wallis formula)



Therefore for $ngeq 0$ integer,



begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



therefore,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}



Perform the change of variable $u=tan x$,$v=tan y$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}



Perform the change of variable $y=dfrac{1}{x}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}



Perform the change of variable $y=arctan x$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}



Perform the change of variable $y=frac{x}{2}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}



Therefore,



begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I just looked at this again and I was struck by it's elegance. Really nice work.
    $endgroup$
    – clathratus
    Jan 30 at 22:23



















8












$begingroup$

As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:00






  • 1




    $begingroup$
    Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
    $endgroup$
    – TheSimpliFire
    Dec 27 '18 at 9:03






  • 1




    $begingroup$
    Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:05



















8












$begingroup$

Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.



This approach is powerful enough to let you compute much worse.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    An elementary proof is possible using Wallis formula. (see my answer)
    $endgroup$
    – FDP
    Dec 27 '18 at 18:58










  • $begingroup$
    What is the $P_m(cdots)$ function here?
    $endgroup$
    – clathratus
    Jan 1 at 21:05






  • 1




    $begingroup$
    @clathratus: $P_m$ is the $m$-th Legendre polynomial.
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 21:07



















8












$begingroup$

For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:26








  • 1




    $begingroup$
    Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:33





















5












$begingroup$

Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




A nice coincidence:



begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}

and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}







Series:



begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}



A series obtained by Ramanujan:



begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}







Integrals:



begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}







share|cite|improve this answer









$endgroup$













  • $begingroup$
    These are really nice (+1). Thanks for your answer
    $endgroup$
    – clathratus
    Dec 27 '18 at 19:11






  • 1




    $begingroup$
    @clathratus: You're welcome.
    $endgroup$
    – Markus Scheuer
    Dec 27 '18 at 19:13












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053715%2frelationship-between-catalans-constant-and-pi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























5 Answers
5






active

oldest

votes








5 Answers
5






active

oldest

votes









active

oldest

votes






active

oldest

votes









13












$begingroup$

begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



From the same source,



begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



ADDENDUM:



Proof for (1),



It is well known that for $ngeq 0$ integer,



begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



(Wallis formula)



Therefore for $ngeq 0$ integer,



begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



therefore,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}



Perform the change of variable $u=tan x$,$v=tan y$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}



Perform the change of variable $y=dfrac{1}{x}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}



Perform the change of variable $y=arctan x$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}



Perform the change of variable $y=frac{x}{2}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}



Therefore,



begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I just looked at this again and I was struck by it's elegance. Really nice work.
    $endgroup$
    – clathratus
    Jan 30 at 22:23
















13












$begingroup$

begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



From the same source,



begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



ADDENDUM:



Proof for (1),



It is well known that for $ngeq 0$ integer,



begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



(Wallis formula)



Therefore for $ngeq 0$ integer,



begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



therefore,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}



Perform the change of variable $u=tan x$,$v=tan y$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}



Perform the change of variable $y=dfrac{1}{x}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}



Perform the change of variable $y=arctan x$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}



Perform the change of variable $y=frac{x}{2}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}



Therefore,



begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I just looked at this again and I was struck by it's elegance. Really nice work.
    $endgroup$
    – clathratus
    Jan 30 at 22:23














13












13








13





$begingroup$

begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



From the same source,



begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



ADDENDUM:



Proof for (1),



It is well known that for $ngeq 0$ integer,



begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



(Wallis formula)



Therefore for $ngeq 0$ integer,



begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



therefore,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}



Perform the change of variable $u=tan x$,$v=tan y$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}



Perform the change of variable $y=dfrac{1}{x}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}



Perform the change of variable $y=arctan x$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}



Perform the change of variable $y=frac{x}{2}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}



Therefore,



begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}






share|cite|improve this answer











$endgroup$



begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}tag1end{align}



(see p81, Deriving Forsyth-Glaisher type series for $frac{1}{pi}$ and Catalan's constant by an elementary method. )



From the same source,



begin{align}sum_{n=0}^infty frac{binom{2n}{n}^2}{16^n(2n+3)}=frac{text{G}}{pi}+frac{1}{2pi}tag2end{align}



ADDENDUM:



Proof for (1),



It is well known that for $ngeq 0$ integer,



begin{align}int_0^{frac{pi}{2}}cos^{2n} x,dx=frac{pi}{2}cdotfrac{binom{2n}{n}}{4^n}end{align}



(Wallis formula)



Therefore for $ngeq 0$ integer,



begin{align}frac{binom{2n}{n}^2pi^2}{4^{2n+1}(2n+1)}=int_0^1 left(int_0^infty int_0^infty t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtend{align}



therefore,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=sum_{n=0}^{infty}left(int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} t^{2n}cos^{2n}x cos^{2n}y ,dx,dy right),dtright)\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} left(sum_{n=0}^{infty}t^{2n}cos^{2n}x cos^{2n}yright) ,dx,dy right),dt\
&=int_0^1 left(int_0^{frac{pi}{2}} int_0^{frac{pi}{2}} frac{1}{1-t^2cos^2 xcos^2 y},dx,dy right),dt\
end{align}



Perform the change of variable $u=tan x$,$v=tan y$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
int_0^1 left(int_0^{infty} int_0^{infty}frac{1}{(1+u^2)(1+v^2)-t^2},du,dv right),dt\
&=int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}}left[frac{arctanleft(frac{usqrt{1+v^2}}{sqrt{1+v^2-t^2}}right)}{sqrt{1+v^2-t^2}}right]_{u=0}^{u=infty},dvright),dt\
&=frac{pi}{2}int_0^1 left(int_0^infty frac{1}{sqrt{1+v^2}sqrt{1+v^2-t^2}},dvright),dt\
&=frac{pi}{2}int_0^infty frac{1}{sqrt{1+v^2}}left[arctanleft(frac{t}{sqrt{1+v^2-t^2}}right)right]_{t=0}^{t=1},dv\
&=frac{pi}{2}int_0^infty frac{arctanleft(frac{1}{v}right)}{sqrt{1+v^2}},dv\
end{align}



Perform the change of variable $y=dfrac{1}{x}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^infty frac{arctan x}{xsqrt{1+x^2}},dx\
end{align}



Perform the change of variable $y=arctan x$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=frac{pi}{2}int_0^{frac{pi}{2}}frac{x}{sin x}
,dx\
&=frac{pi}{2}Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{frac{pi}{2}}-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
&=-frac{pi}{2}int_0^{frac{pi}{2}}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}



Perform the change of variable $y=frac{x}{2}$,



begin{align}pi^2sum_{n=0}^{infty}frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}&=
-piint_0^{frac{pi}{4}}ln(tan x),dx\
&=pitimes text{G}\
end{align}



Therefore,



begin{align}boxed{sum_{n=0}^infty frac{binom{2n}{n}^2}{4^{2n+1}(2n+1)}=frac{text{G}}{pi}}end{align}







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 27 '18 at 18:54

























answered Dec 27 '18 at 9:36









FDPFDP

6,13211929




6,13211929












  • $begingroup$
    I just looked at this again and I was struck by it's elegance. Really nice work.
    $endgroup$
    – clathratus
    Jan 30 at 22:23


















  • $begingroup$
    I just looked at this again and I was struck by it's elegance. Really nice work.
    $endgroup$
    – clathratus
    Jan 30 at 22:23
















$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23




$begingroup$
I just looked at this again and I was struck by it's elegance. Really nice work.
$endgroup$
– clathratus
Jan 30 at 22:23











8












$begingroup$

As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:00






  • 1




    $begingroup$
    Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
    $endgroup$
    – TheSimpliFire
    Dec 27 '18 at 9:03






  • 1




    $begingroup$
    Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:05
















8












$begingroup$

As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:00






  • 1




    $begingroup$
    Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
    $endgroup$
    – TheSimpliFire
    Dec 27 '18 at 9:03






  • 1




    $begingroup$
    Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:05














8












8








8





$begingroup$

As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$






share|cite|improve this answer











$endgroup$



As is detailed here, there are many representations of Catalan's constant, even in terms of alternating infinite sums of polynomial reciprocals - see equations $(20)$ through $(32)$. Equation $(9)$ provides a very nice form including $pi$, $$G=frac{pi^2}8-2sum_{kge 0}frac1{(4k+3)^2}$$ but it is derived from $zeta(2)$. Therefore it shouldn't be surprising as values of $zeta(2s)$ for a positive integer $s$ are fractions of $pi^2$. Another one from Wikipedia gives $$8G=pilog(2+sqrt3)+sum_{kge0}frac3{(2k+1)^2binom{2k}k}.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 27 '18 at 9:05

























answered Dec 27 '18 at 8:54









TheSimpliFireTheSimpliFire

13.2k62464




13.2k62464












  • $begingroup$
    These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:00






  • 1




    $begingroup$
    Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
    $endgroup$
    – TheSimpliFire
    Dec 27 '18 at 9:03






  • 1




    $begingroup$
    Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:05


















  • $begingroup$
    These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:00






  • 1




    $begingroup$
    Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
    $endgroup$
    – TheSimpliFire
    Dec 27 '18 at 9:03






  • 1




    $begingroup$
    Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
    $endgroup$
    – Jack D'Aurizio
    Dec 27 '18 at 9:05
















$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00




$begingroup$
These are really nice (+1). Would you happen to know if any of them are a simplified version of the series I found?
$endgroup$
– clathratus
Dec 27 '18 at 9:00




1




1




$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03




$begingroup$
Obviously all of these expressions and yours should be equivalent. Perhaps yours is a combination of the two, as I see factors of $4kpm3$, $4kpm1$ and logarithms in various places in the expression.
$endgroup$
– TheSimpliFire
Dec 27 '18 at 9:03




1




1




$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05




$begingroup$
Minor nitpick: the last central binomial coefficient should be $binom{2k}{k}$, I believe. The last identity can be proved through the Beta function and the dilogarithms machinery.
$endgroup$
– Jack D'Aurizio
Dec 27 '18 at 9:05











8












$begingroup$

Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.



This approach is powerful enough to let you compute much worse.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    An elementary proof is possible using Wallis formula. (see my answer)
    $endgroup$
    – FDP
    Dec 27 '18 at 18:58










  • $begingroup$
    What is the $P_m(cdots)$ function here?
    $endgroup$
    – clathratus
    Jan 1 at 21:05






  • 1




    $begingroup$
    @clathratus: $P_m$ is the $m$-th Legendre polynomial.
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 21:07
















8












$begingroup$

Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.



This approach is powerful enough to let you compute much worse.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    An elementary proof is possible using Wallis formula. (see my answer)
    $endgroup$
    – FDP
    Dec 27 '18 at 18:58










  • $begingroup$
    What is the $P_m(cdots)$ function here?
    $endgroup$
    – clathratus
    Jan 1 at 21:05






  • 1




    $begingroup$
    @clathratus: $P_m$ is the $m$-th Legendre polynomial.
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 21:07














8












8








8





$begingroup$

Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.



This approach is powerful enough to let you compute much worse.






share|cite|improve this answer











$endgroup$



Let us give a self-contained proof of Ramanujan's identity
$$sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1}=frac{4G}{pi}.tag{1}$$
We may recall the Maclaurin series of the complete elliptic integral of the first kind (in the following, the argument of $K$ is the elliptic modulus)
$$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n tag{2}$$
such that the LHS of $(1)$ blatantly is $frac{2}{pi}int_{0}^{1}K(x^2),dx$ or
$$ frac{1}{pi}int_{0}^{1}frac{K(x)}{sqrt{x}},dx.tag{3}$$
Due to the generating function for Legendre polynomials, both $K(x)$ and $frac{1}{sqrt{x}}$ have very simple FL (Fourier-Legendre) expansions, namely
$$ K(x)=sum_{mgeq 0}frac{2}{2m+1}P_m(2x-1),qquad frac{1}{sqrt{x}}=sum_{mgeq 0}2(-1)^m P_m(2x-1) tag{4} $$
hence by the orthogonality relation $int_{0}^{1}P_n(2x-1)P_m(2x-1),dx=frac{delta(m,n)}{2n+1}$ we get
$$ sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2frac{1}{2n+1} = frac{4}{pi}sum_{mgeq 0}frac{(-1)^m}{(2m+1)^2}=frac{4G}{pi}tag{5}$$
QED.



This approach is powerful enough to let you compute much worse.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 27 '18 at 10:31

























answered Dec 27 '18 at 10:25









Jack D'AurizioJack D'Aurizio

292k33284673




292k33284673












  • $begingroup$
    An elementary proof is possible using Wallis formula. (see my answer)
    $endgroup$
    – FDP
    Dec 27 '18 at 18:58










  • $begingroup$
    What is the $P_m(cdots)$ function here?
    $endgroup$
    – clathratus
    Jan 1 at 21:05






  • 1




    $begingroup$
    @clathratus: $P_m$ is the $m$-th Legendre polynomial.
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 21:07


















  • $begingroup$
    An elementary proof is possible using Wallis formula. (see my answer)
    $endgroup$
    – FDP
    Dec 27 '18 at 18:58










  • $begingroup$
    What is the $P_m(cdots)$ function here?
    $endgroup$
    – clathratus
    Jan 1 at 21:05






  • 1




    $begingroup$
    @clathratus: $P_m$ is the $m$-th Legendre polynomial.
    $endgroup$
    – Jack D'Aurizio
    Jan 1 at 21:07
















$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58




$begingroup$
An elementary proof is possible using Wallis formula. (see my answer)
$endgroup$
– FDP
Dec 27 '18 at 18:58












$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05




$begingroup$
What is the $P_m(cdots)$ function here?
$endgroup$
– clathratus
Jan 1 at 21:05




1




1




$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07




$begingroup$
@clathratus: $P_m$ is the $m$-th Legendre polynomial.
$endgroup$
– Jack D'Aurizio
Jan 1 at 21:07











8












$begingroup$

For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:26








  • 1




    $begingroup$
    Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:33


















8












$begingroup$

For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:26








  • 1




    $begingroup$
    Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:33
















8












8








8





$begingroup$

For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$






share|cite|improve this answer









$endgroup$



For some integrals: $$color{blue}{int_0^1 lnleft(frac{1-x}{1+x}right)lnleft(frac{1-x^2}{1+x^2}right)frac{dx}{x}=pi G}$$
$$color{red}{int_0^frac{pi}{2} xlnleft(cotleft(frac{x}{2}right)left(frac{sec x}{2}right)^4right)dx=pi G}$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 27 '18 at 10:56









ZackyZacky

7,87511062




7,87511062








  • 1




    $begingroup$
    In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:26








  • 1




    $begingroup$
    Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:33
















  • 1




    $begingroup$
    In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:26








  • 1




    $begingroup$
    Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
    $endgroup$
    – FDP
    Dec 27 '18 at 11:33










1




1




$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26






$begingroup$
In the left hand of the first formula perform the change of variable $y=dfrac{1-x}{1+x}$ and you are ready to apply my favorite method ;)
$endgroup$
– FDP
Dec 27 '18 at 11:26






1




1




$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33






$begingroup$
Since begin{align}pi^2 times frac{text{G}}{pi}=pitext{G}end{align} your formula can be probably used to prove the one i have written below (the first one)
$endgroup$
– FDP
Dec 27 '18 at 11:33













5












$begingroup$

Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




A nice coincidence:



begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}

and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}







Series:



begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}



A series obtained by Ramanujan:



begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}







Integrals:



begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}







share|cite|improve this answer









$endgroup$













  • $begingroup$
    These are really nice (+1). Thanks for your answer
    $endgroup$
    – clathratus
    Dec 27 '18 at 19:11






  • 1




    $begingroup$
    @clathratus: You're welcome.
    $endgroup$
    – Markus Scheuer
    Dec 27 '18 at 19:13
















5












$begingroup$

Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




A nice coincidence:



begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}

and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}







Series:



begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}



A series obtained by Ramanujan:



begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}







Integrals:



begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}







share|cite|improve this answer









$endgroup$













  • $begingroup$
    These are really nice (+1). Thanks for your answer
    $endgroup$
    – clathratus
    Dec 27 '18 at 19:11






  • 1




    $begingroup$
    @clathratus: You're welcome.
    $endgroup$
    – Markus Scheuer
    Dec 27 '18 at 19:13














5












5








5





$begingroup$

Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




A nice coincidence:



begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}

and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}







Series:



begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}



A series obtained by Ramanujan:



begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}







Integrals:



begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}







share|cite|improve this answer









$endgroup$



Here is a selection of formulas stated in section 1.7 Catalan's Constant, $G$ of Mathematical constants by Steven R. Finch




A nice coincidence:



begin{align*}
frac{pi^2}{12ln(2)}&=left(1-frac{1}{2^2}+frac{1}{3^2}-frac{1}{4^2}+-cdotsright)left(1-frac{1}{2}+frac{1}{3}-frac{1}{4}+-cdotsright)^{-1}\
frac{4G}{pi}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1-frac{1}{3}+frac{1}{5}-frac{1}{7}+-cdotsright)^{-1}\
end{align*}

and the variation
begin{align*}
frac{8G}{pi^2}&=left(1-frac{1}{3^2}+frac{1}{5^2}-frac{1}{7^2}+-cdotsright)left(1+frac{1}{3}+frac{1}{5}+frac{1}{7}+cdotsright)^{-1}\
end{align*}







Series:



begin{align*}
sum_{k=0}^infty frac{1}{(2k+1)^2binom{2k}{k}}&=frac{8}{3}G-frac{pi}{3}ln(2+sqrt{3})\
sum_{n=1}^inftyfrac{(-1)^{n+1}}{n^2}sum_{k=1}^nfrac{1}{k+n}&=pi G-frac{33}{16}zeta(3)
end{align*}



A series obtained by Ramanujan:



begin{align*}
G=frac{5}{48}pi^2-2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2left(e^{pi (2k+1)}-1right)}-frac{1}{4}sum_{k=1}^inftyfrac{mathrm{sech} (pi k)}{k^2}
end{align*}







Integrals:



begin{align*}
4int_{0}^1frac{arctan(x)^2}{x},dx=int_0^{frac{pi}{2}}frac{x^2}{sin (x)},dx=2pi G-frac{7}{2}zeta(3)
end{align*}








share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 27 '18 at 14:46









Markus ScheuerMarkus Scheuer

64.2k460152




64.2k460152












  • $begingroup$
    These are really nice (+1). Thanks for your answer
    $endgroup$
    – clathratus
    Dec 27 '18 at 19:11






  • 1




    $begingroup$
    @clathratus: You're welcome.
    $endgroup$
    – Markus Scheuer
    Dec 27 '18 at 19:13


















  • $begingroup$
    These are really nice (+1). Thanks for your answer
    $endgroup$
    – clathratus
    Dec 27 '18 at 19:11






  • 1




    $begingroup$
    @clathratus: You're welcome.
    $endgroup$
    – Markus Scheuer
    Dec 27 '18 at 19:13
















$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11




$begingroup$
These are really nice (+1). Thanks for your answer
$endgroup$
– clathratus
Dec 27 '18 at 19:11




1




1




$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13




$begingroup$
@clathratus: You're welcome.
$endgroup$
– Markus Scheuer
Dec 27 '18 at 19:13


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053715%2frelationship-between-catalans-constant-and-pi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Le Mesnil-Réaume

Ida-Boy-Ed-Garten

web3.py web3.isConnected() returns false always