Finding Orthonormal Basis of a subspace spanned by $Bbb R^4$











up vote
0
down vote

favorite












Find an orthonormal basis in the subspace $Bbb R^4$ spanned by all solutions of $x+2y+3z-6j=0$. Then express vector $b = (1,1,1,1)$ to this basis.



I'm very confused on how to start this question. I know I would have to use
The Gram-Schmidt process but I'm not sure how.



Thank you










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    Find an orthonormal basis in the subspace $Bbb R^4$ spanned by all solutions of $x+2y+3z-6j=0$. Then express vector $b = (1,1,1,1)$ to this basis.



    I'm very confused on how to start this question. I know I would have to use
    The Gram-Schmidt process but I'm not sure how.



    Thank you










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Find an orthonormal basis in the subspace $Bbb R^4$ spanned by all solutions of $x+2y+3z-6j=0$. Then express vector $b = (1,1,1,1)$ to this basis.



      I'm very confused on how to start this question. I know I would have to use
      The Gram-Schmidt process but I'm not sure how.



      Thank you










      share|cite|improve this question















      Find an orthonormal basis in the subspace $Bbb R^4$ spanned by all solutions of $x+2y+3z-6j=0$. Then express vector $b = (1,1,1,1)$ to this basis.



      I'm very confused on how to start this question. I know I would have to use
      The Gram-Schmidt process but I'm not sure how.



      Thank you







      linear-algebra






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 1 '16 at 19:24









      InsideOut

      4,93131033




      4,93131033










      asked Nov 1 '16 at 19:23









      sbkldskl4

      285




      285






















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          0
          down vote













          First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.



          Then find a basis of the hyperplane, for instance:
          $$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$



          Apply Gram-Schmidt to find an orthogonal basis:
          $$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
          (i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).



          Finally, normalise:
          $$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$






          share|cite|improve this answer




























            up vote
            0
            down vote













            From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.



            Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!






            share|cite|improve this answer






























              up vote
              0
              down vote













              You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.



              i.e. A non-orthonormal basis is



              $begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$



              Then apply Graham-Schmidt. Normalize the first vector



              $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$



              Then take the inner product of the normalized first vector and the second vector



              $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$



              and



              $begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$



              and normalize it:



              $begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$



              and finally
              $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$



              $begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$



              and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$



              And since we cheated part 2 is easy.



              If that is too cheating... Suppose we start with



              $begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$



              Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector



              $begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$



              I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.



              We still need to normalize though.



              $begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$



              And now to find our $b$ in terms of this basis.



              Take the inner product of $b$ with each vector and that is the weight in the new basis.



              $begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$






              share|cite|improve this answer






























                up vote
                0
                down vote













                First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.



                Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
                $${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
                frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
                frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
                right}$$

                as an orthonormal basis.
                Let $w=(1,1,1,1)^t$, then
                $$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
                langle b_3,wrangle b_3.$$






                share|cite|improve this answer





















                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                   

                  draft saved


                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1994966%2ffinding-orthonormal-basis-of-a-subspace-spanned-by-bbb-r4%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes








                  up vote
                  0
                  down vote













                  First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.



                  Then find a basis of the hyperplane, for instance:
                  $$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$



                  Apply Gram-Schmidt to find an orthogonal basis:
                  $$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
                  (i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).



                  Finally, normalise:
                  $$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$






                  share|cite|improve this answer

























                    up vote
                    0
                    down vote













                    First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.



                    Then find a basis of the hyperplane, for instance:
                    $$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$



                    Apply Gram-Schmidt to find an orthogonal basis:
                    $$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
                    (i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).



                    Finally, normalise:
                    $$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$






                    share|cite|improve this answer























                      up vote
                      0
                      down vote










                      up vote
                      0
                      down vote









                      First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.



                      Then find a basis of the hyperplane, for instance:
                      $$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$



                      Apply Gram-Schmidt to find an orthogonal basis:
                      $$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
                      (i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).



                      Finally, normalise:
                      $$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$






                      share|cite|improve this answer












                      First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.



                      Then find a basis of the hyperplane, for instance:
                      $$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$



                      Apply Gram-Schmidt to find an orthogonal basis:
                      $$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
                      (i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).



                      Finally, normalise:
                      $$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Nov 1 '16 at 19:55









                      Bernard

                      116k637107




                      116k637107






















                          up vote
                          0
                          down vote













                          From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.



                          Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!






                          share|cite|improve this answer



























                            up vote
                            0
                            down vote













                            From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.



                            Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!






                            share|cite|improve this answer

























                              up vote
                              0
                              down vote










                              up vote
                              0
                              down vote









                              From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.



                              Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!






                              share|cite|improve this answer














                              From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.



                              Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jun 1 at 21:32

























                              answered Jun 1 at 21:10









                              user247327

                              10.2k1515




                              10.2k1515






















                                  up vote
                                  0
                                  down vote













                                  You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.



                                  i.e. A non-orthonormal basis is



                                  $begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$



                                  Then apply Graham-Schmidt. Normalize the first vector



                                  $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$



                                  Then take the inner product of the normalized first vector and the second vector



                                  $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$



                                  and



                                  $begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$



                                  and normalize it:



                                  $begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$



                                  and finally
                                  $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$



                                  $begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$



                                  and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$



                                  And since we cheated part 2 is easy.



                                  If that is too cheating... Suppose we start with



                                  $begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$



                                  Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector



                                  $begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$



                                  I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.



                                  We still need to normalize though.



                                  $begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$



                                  And now to find our $b$ in terms of this basis.



                                  Take the inner product of $b$ with each vector and that is the weight in the new basis.



                                  $begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$






                                  share|cite|improve this answer



























                                    up vote
                                    0
                                    down vote













                                    You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.



                                    i.e. A non-orthonormal basis is



                                    $begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$



                                    Then apply Graham-Schmidt. Normalize the first vector



                                    $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$



                                    Then take the inner product of the normalized first vector and the second vector



                                    $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$



                                    and



                                    $begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$



                                    and normalize it:



                                    $begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$



                                    and finally
                                    $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$



                                    $begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$



                                    and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$



                                    And since we cheated part 2 is easy.



                                    If that is too cheating... Suppose we start with



                                    $begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$



                                    Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector



                                    $begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$



                                    I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.



                                    We still need to normalize though.



                                    $begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$



                                    And now to find our $b$ in terms of this basis.



                                    Take the inner product of $b$ with each vector and that is the weight in the new basis.



                                    $begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$






                                    share|cite|improve this answer

























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.



                                      i.e. A non-orthonormal basis is



                                      $begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$



                                      Then apply Graham-Schmidt. Normalize the first vector



                                      $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$



                                      Then take the inner product of the normalized first vector and the second vector



                                      $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$



                                      and



                                      $begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$



                                      and normalize it:



                                      $begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$



                                      and finally
                                      $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$



                                      $begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$



                                      and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$



                                      And since we cheated part 2 is easy.



                                      If that is too cheating... Suppose we start with



                                      $begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$



                                      Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector



                                      $begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$



                                      I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.



                                      We still need to normalize though.



                                      $begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$



                                      And now to find our $b$ in terms of this basis.



                                      Take the inner product of $b$ with each vector and that is the weight in the new basis.



                                      $begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$






                                      share|cite|improve this answer














                                      You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.



                                      i.e. A non-orthonormal basis is



                                      $begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$



                                      Then apply Graham-Schmidt. Normalize the first vector



                                      $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$



                                      Then take the inner product of the normalized first vector and the second vector



                                      $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$



                                      and



                                      $begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$



                                      and normalize it:



                                      $begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$



                                      and finally
                                      $begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$



                                      $begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$



                                      and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$



                                      And since we cheated part 2 is easy.



                                      If that is too cheating... Suppose we start with



                                      $begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$



                                      Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector



                                      $begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$



                                      I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.



                                      We still need to normalize though.



                                      $begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$



                                      And now to find our $b$ in terms of this basis.



                                      Take the inner product of $b$ with each vector and that is the weight in the new basis.



                                      $begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Aug 9 at 1:02

























                                      answered Aug 9 at 0:56









                                      Doug M

                                      42.6k31752




                                      42.6k31752






















                                          up vote
                                          0
                                          down vote













                                          First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.



                                          Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
                                          $${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
                                          frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
                                          frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
                                          right}$$

                                          as an orthonormal basis.
                                          Let $w=(1,1,1,1)^t$, then
                                          $$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
                                          langle b_3,wrangle b_3.$$






                                          share|cite|improve this answer

























                                            up vote
                                            0
                                            down vote













                                            First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.



                                            Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
                                            $${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
                                            frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
                                            frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
                                            right}$$

                                            as an orthonormal basis.
                                            Let $w=(1,1,1,1)^t$, then
                                            $$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
                                            langle b_3,wrangle b_3.$$






                                            share|cite|improve this answer























                                              up vote
                                              0
                                              down vote










                                              up vote
                                              0
                                              down vote









                                              First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.



                                              Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
                                              $${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
                                              frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
                                              frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
                                              right}$$

                                              as an orthonormal basis.
                                              Let $w=(1,1,1,1)^t$, then
                                              $$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
                                              langle b_3,wrangle b_3.$$






                                              share|cite|improve this answer












                                              First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.



                                              Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
                                              $${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
                                              frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
                                              frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
                                              right}$$

                                              as an orthonormal basis.
                                              Let $w=(1,1,1,1)^t$, then
                                              $$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
                                              langle b_3,wrangle b_3.$$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Nov 18 at 10:57









                                              Michael Hoppe

                                              10.6k31733




                                              10.6k31733






























                                                   

                                                  draft saved


                                                  draft discarded



















































                                                   


                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1994966%2ffinding-orthonormal-basis-of-a-subspace-spanned-by-bbb-r4%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Bundesstraße 106

                                                  Verónica Boquete

                                                  Ida-Boy-Ed-Garten