Finding Orthonormal Basis of a subspace spanned by $Bbb R^4$
up vote
0
down vote
favorite
Find an orthonormal basis in the subspace $Bbb R^4$ spanned by all solutions of $x+2y+3z-6j=0$. Then express vector $b = (1,1,1,1)$ to this basis.
I'm very confused on how to start this question. I know I would have to use
The Gram-Schmidt process but I'm not sure how.
Thank you
linear-algebra
add a comment |
up vote
0
down vote
favorite
Find an orthonormal basis in the subspace $Bbb R^4$ spanned by all solutions of $x+2y+3z-6j=0$. Then express vector $b = (1,1,1,1)$ to this basis.
I'm very confused on how to start this question. I know I would have to use
The Gram-Schmidt process but I'm not sure how.
Thank you
linear-algebra
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Find an orthonormal basis in the subspace $Bbb R^4$ spanned by all solutions of $x+2y+3z-6j=0$. Then express vector $b = (1,1,1,1)$ to this basis.
I'm very confused on how to start this question. I know I would have to use
The Gram-Schmidt process but I'm not sure how.
Thank you
linear-algebra
Find an orthonormal basis in the subspace $Bbb R^4$ spanned by all solutions of $x+2y+3z-6j=0$. Then express vector $b = (1,1,1,1)$ to this basis.
I'm very confused on how to start this question. I know I would have to use
The Gram-Schmidt process but I'm not sure how.
Thank you
linear-algebra
linear-algebra
edited Nov 1 '16 at 19:24
InsideOut
4,93131033
4,93131033
asked Nov 1 '16 at 19:23
sbkldskl4
285
285
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
up vote
0
down vote
First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.
Then find a basis of the hyperplane, for instance:
$$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$
Apply Gram-Schmidt to find an orthogonal basis:
$$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
(i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).
Finally, normalise:
$$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$
add a comment |
up vote
0
down vote
From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.
Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!
add a comment |
up vote
0
down vote
You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.
i.e. A non-orthonormal basis is
$begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$
Then apply Graham-Schmidt. Normalize the first vector
$begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$
Then take the inner product of the normalized first vector and the second vector
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$
and
$begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$
and normalize it:
$begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$
and finally
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$
$begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$
and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$
And since we cheated part 2 is easy.
If that is too cheating... Suppose we start with
$begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$
Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector
$begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$
I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.
We still need to normalize though.
$begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$
And now to find our $b$ in terms of this basis.
Take the inner product of $b$ with each vector and that is the weight in the new basis.
$begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$
add a comment |
up vote
0
down vote
First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.
Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
$${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
right}$$
as an orthonormal basis.
Let $w=(1,1,1,1)^t$, then
$$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
langle b_3,wrangle b_3.$$
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.
Then find a basis of the hyperplane, for instance:
$$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$
Apply Gram-Schmidt to find an orthogonal basis:
$$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
(i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).
Finally, normalise:
$$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$
add a comment |
up vote
0
down vote
First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.
Then find a basis of the hyperplane, for instance:
$$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$
Apply Gram-Schmidt to find an orthogonal basis:
$$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
(i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).
Finally, normalise:
$$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$
add a comment |
up vote
0
down vote
up vote
0
down vote
First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.
Then find a basis of the hyperplane, for instance:
$$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$
Apply Gram-Schmidt to find an orthogonal basis:
$$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
(i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).
Finally, normalise:
$$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$
First solve the equation parametrically, say: $x=-2y-3z+6j$. This shows the subspace of solutions is isomorphic to $mathbf R^3$.
Then find a basis of the hyperplane, for instance:
$$u=begin{bmatrix}2\-1\0\0end{bmatrix},;v=begin{bmatrix}3\0\-1\0end{bmatrix},;w=begin{bmatrix}6\0\0\1end{bmatrix}. $$
Apply Gram-Schmidt to find an orthogonal basis:
$$e_1=u,quad e_2=v-frac{langle u,vrangle}{langle u,urangle},u, quad e_3=w-frac{langle u,wrangle}{langle u,urangle},u-frac{langle vu,wrangle}{langle v,vrangle},v$$
(i.e. subtract from $v$ the orthogonal projection of $v$ onto the line directed by u, and subtract from $w$ the projection of $w$ onto the subspace generated by $u$ and $v$).
Finally, normalise:
$$e'_1=frac{e_1}{langle e_1,e_1rangle}, quad e'_2=frac{e_2}{langle e_2,e_2rangle}, quad e'_3=frac{e_3}{langle e_3,e_3rangle}.$$
answered Nov 1 '16 at 19:55
Bernard
116k637107
116k637107
add a comment |
add a comment |
up vote
0
down vote
From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.
Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!
add a comment |
up vote
0
down vote
From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.
Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!
add a comment |
up vote
0
down vote
up vote
0
down vote
From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.
Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!
From x+ 2y+ 3z- 6j= 0 we have x= 6j- 3z- 2y. So any vector in that subspace can be written as = <6j- 3z- 2y, y, z, j> = j<6, 0, 0, 1>- z<-3, 0, 1, 0>+ y<-2, 1, 0, 0>. {<6, 0, 0, 1>, <-3, 0, 1, 0>, <-2, 1, 0, 0>} is a basis for that three dimensional vector space.
Using the Gran-Schmidt process, <6, 0, 0, 1> has length $sqrt{7}$ and a unit vector in that direction is $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$. Now, note that the dot product of that and <-3, 0, 1, 0> is $frac{-18}{sqrt{7}}$ so that $frac{-18}{sqrt{7}}left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-frac{108}{7}, 0, 0, -frac{18}{7}right>$ is its projection on $left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>$ and then $left<-3, 0, 1, 0right>- left<frac{6}{sqrt{7}}, 0, 0, frac{1}{sqrt{7}}right>= left<-3- frac{6}{sqrt{7}}, 0, 1- frac{1}{sqrt{7}}, 0right>= left<frac{-3sqrt{7}- 6}{sqrt{7}}, 0, frac{sqrt{7}- 1}{sqrt{7}}, 0right>$ is perpendicular to it. Divide that by its length to get a second unit vector perpendicular to the first. Continue!
edited Jun 1 at 21:32
answered Jun 1 at 21:10
user247327
10.2k1515
10.2k1515
add a comment |
add a comment |
up vote
0
down vote
You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.
i.e. A non-orthonormal basis is
$begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$
Then apply Graham-Schmidt. Normalize the first vector
$begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$
Then take the inner product of the normalized first vector and the second vector
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$
and
$begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$
and normalize it:
$begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$
and finally
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$
$begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$
and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$
And since we cheated part 2 is easy.
If that is too cheating... Suppose we start with
$begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$
Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector
$begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$
I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.
We still need to normalize though.
$begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$
And now to find our $b$ in terms of this basis.
Take the inner product of $b$ with each vector and that is the weight in the new basis.
$begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$
add a comment |
up vote
0
down vote
You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.
i.e. A non-orthonormal basis is
$begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$
Then apply Graham-Schmidt. Normalize the first vector
$begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$
Then take the inner product of the normalized first vector and the second vector
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$
and
$begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$
and normalize it:
$begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$
and finally
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$
$begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$
and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$
And since we cheated part 2 is easy.
If that is too cheating... Suppose we start with
$begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$
Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector
$begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$
I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.
We still need to normalize though.
$begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$
And now to find our $b$ in terms of this basis.
Take the inner product of $b$ with each vector and that is the weight in the new basis.
$begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$
add a comment |
up vote
0
down vote
up vote
0
down vote
You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.
i.e. A non-orthonormal basis is
$begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$
Then apply Graham-Schmidt. Normalize the first vector
$begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$
Then take the inner product of the normalized first vector and the second vector
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$
and
$begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$
and normalize it:
$begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$
and finally
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$
$begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$
and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$
And since we cheated part 2 is easy.
If that is too cheating... Suppose we start with
$begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$
Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector
$begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$
I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.
We still need to normalize though.
$begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$
And now to find our $b$ in terms of this basis.
Take the inner product of $b$ with each vector and that is the weight in the new basis.
$begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$
You could circumvet part 2 if you chose $begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$ as your first basis vector.
i.e. A non-orthonormal basis is
$begin{bmatrix} 1\1\1\1end{bmatrix},begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}$
Then apply Graham-Schmidt. Normalize the first vector
$begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix}$
Then take the inner product of the normalized first vector and the second vector
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix}-2\1\0\0end{bmatrix} = -1$
and
$begin{bmatrix}-2\1\0\0end{bmatrix} - (-1)begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} = begin{bmatrix}-frac32\frac 12\frac 12\frac 12end{bmatrix}$
and normalize it:
$begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix}$
and finally
$begin{bmatrix} frac 12&frac 12&frac 12&frac 12end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac 32,begin{bmatrix}-frac 3{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}&frac 1{sqrt {12}}end{bmatrix}begin{bmatrix} 0\0\2\1end{bmatrix} = frac {3}{sqrt 12}$
$begin{bmatrix} 0\0\2\1end{bmatrix} + frac 32begin{bmatrix} frac 12\frac 12\frac 12\frac 12end{bmatrix} - frac {3}{sqrt12} begin{bmatrix}-frac 3{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}\frac 1{sqrt {12}}end{bmatrix} = begin{bmatrix} 0\-1\1\0end{bmatrix}$
and normalize: $begin{bmatrix} 0\-frac 1{sqrt 2}\frac 1{sqrt 2}\0end{bmatrix}$
And since we cheated part 2 is easy.
If that is too cheating... Suppose we start with
$begin{bmatrix} -2\1\0\0end{bmatrix},begin{bmatrix} 0\0\2\1end{bmatrix}, begin{bmatrix} 1\1\1\1end{bmatrix}$
Now the first two vectors are already orthogonal, they just need to be normalized, and the last vector
$begin{bmatrix} 1\1\1\1end{bmatrix} + frac 15begin{bmatrix} -2\1\0\0end{bmatrix} - frac {3}{5}begin{bmatrix} 0\0\2\1end{bmatrix} = begin{bmatrix} 0.6\1.2\-0.2\0.4end{bmatrix}$
I took a short cut. Rather than normalizing the first two basis vectors, I divided the scalar by the square of the norm.
We still need to normalize though.
$begin{bmatrix} -frac {2}{sqrt5}\frac 1{sqrt 5}\0\0end{bmatrix},begin{bmatrix} 0\0\frac2{sqrt 5}\frac1{sqrt 5}end{bmatrix}, begin{bmatrix} frac {3}{5sqrt2}\frac {6}{5sqrt2}\-frac {1}{5sqrt2}\frac {2}{5sqrt2}end{bmatrix}$
And now to find our $b$ in terms of this basis.
Take the inner product of $b$ with each vector and that is the weight in the new basis.
$begin{bmatrix}1&1&1&1end{bmatrix}begin{bmatrix} -frac {2}{sqrt5}&0&frac {3}{5sqrt2}\frac 1{sqrt 5}&0&frac {6}{5sqrt2}\0&frac{2}{sqrt5}&-frac{1}{5sqrt 2}\0&frac {1}{sqrt 5}&frac {2}{5sqrt2}end{bmatrix}= begin{bmatrix} frac {1}{sqrt5}&frac {3}{sqrt5}&sqrt2end{bmatrix}$
edited Aug 9 at 1:02
answered Aug 9 at 0:56
Doug M
42.6k31752
42.6k31752
add a comment |
add a comment |
up vote
0
down vote
First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.
Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
$${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
right}$$
as an orthonormal basis.
Let $w=(1,1,1,1)^t$, then
$$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
langle b_3,wrangle b_3.$$
add a comment |
up vote
0
down vote
First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.
Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
$${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
right}$$
as an orthonormal basis.
Let $w=(1,1,1,1)^t$, then
$$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
langle b_3,wrangle b_3.$$
add a comment |
up vote
0
down vote
up vote
0
down vote
First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.
Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
$${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
right}$$
as an orthonormal basis.
Let $w=(1,1,1,1)^t$, then
$$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
langle b_3,wrangle b_3.$$
First of all you need three vectors, perpendicular to $v=(1,2,3,-6)^t$, which are also mutually perpendicular.
Start with $(2,-1,0,0)^t$ ans $(0,0,6,3)^t$. Now obviously the vector $(3,6,-1,2)^t$ matches the conditions. Normalizing gives
$${b_1,b_2,b_3}=left{frac{sqrt5}{5}begin{pmatrix}2\-1\0\0end{pmatrix},
frac{sqrt5}{5}begin{pmatrix}0\0\2\1end{pmatrix},
frac{sqrt2}{10}begin{pmatrix}3\6\-1\2end{pmatrix}
right}$$
as an orthonormal basis.
Let $w=(1,1,1,1)^t$, then
$$w=langle b_1,wrangle b_1+langle b_2,wrangle b_2+
langle b_3,wrangle b_3.$$
answered Nov 18 at 10:57
Michael Hoppe
10.6k31733
10.6k31733
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1994966%2ffinding-orthonormal-basis-of-a-subspace-spanned-by-bbb-r4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown