Evaluate $I_n = int_0^{pi / 2} sin n theta cos theta ,dtheta$ by integrating by parts twice
By integrating by parts twice, show that $I_n$, as defined below for integers $n > 1$, has the value shown.
$$I_n = int_0^{pi / 2} sin n theta cos theta ,dtheta = frac{n-sin(frac{pi n}{2})}{n^2 -1}$$
I can do this using the formula $$sin A cos B = frac{1}{2}[sin(A-B)+sin(A+B)] ,$$ but when I try using integration by parts I get stuck in a loop of integrating the same thing over and over.
calculus integration definite-integrals trigonometric-integrals
|
show 3 more comments
By integrating by parts twice, show that $I_n$, as defined below for integers $n > 1$, has the value shown.
$$I_n = int_0^{pi / 2} sin n theta cos theta ,dtheta = frac{n-sin(frac{pi n}{2})}{n^2 -1}$$
I can do this using the formula $$sin A cos B = frac{1}{2}[sin(A-B)+sin(A+B)] ,$$ but when I try using integration by parts I get stuck in a loop of integrating the same thing over and over.
calculus integration definite-integrals trigonometric-integrals
1
Please format your question a bit more; there are apparently some unreadable characters.
– T. Bongers
Nov 18 at 19:04
Can you describe a little more the choices that lead to getting "stuck in a loop"?
– Travis
Nov 18 at 19:18
@Travis let theta=x so it's quicker for me to type... so, after the first IBP i get sin(x)sin(nx) - Intergral [n(sin(x)cos(nx))]. when i use IBP on this integral i get sin(x)sin(nx) - Integral [cos(x)sin(nx)] which is what i originally tried to integrate ..
– Taylor
Nov 18 at 19:48
@T.Bongers i did try my best. i'm new to this.
– Taylor
Nov 18 at 19:48
I think that there are some non-Unicode symbols being included in the equation (to the right of the second equality).
– T. Bongers
Nov 18 at 19:49
|
show 3 more comments
By integrating by parts twice, show that $I_n$, as defined below for integers $n > 1$, has the value shown.
$$I_n = int_0^{pi / 2} sin n theta cos theta ,dtheta = frac{n-sin(frac{pi n}{2})}{n^2 -1}$$
I can do this using the formula $$sin A cos B = frac{1}{2}[sin(A-B)+sin(A+B)] ,$$ but when I try using integration by parts I get stuck in a loop of integrating the same thing over and over.
calculus integration definite-integrals trigonometric-integrals
By integrating by parts twice, show that $I_n$, as defined below for integers $n > 1$, has the value shown.
$$I_n = int_0^{pi / 2} sin n theta cos theta ,dtheta = frac{n-sin(frac{pi n}{2})}{n^2 -1}$$
I can do this using the formula $$sin A cos B = frac{1}{2}[sin(A-B)+sin(A+B)] ,$$ but when I try using integration by parts I get stuck in a loop of integrating the same thing over and over.
calculus integration definite-integrals trigonometric-integrals
calculus integration definite-integrals trigonometric-integrals
edited Nov 25 at 8:51
Martin Sleziak
44.6k7115270
44.6k7115270
asked Nov 18 at 19:03
Taylor
42
42
1
Please format your question a bit more; there are apparently some unreadable characters.
– T. Bongers
Nov 18 at 19:04
Can you describe a little more the choices that lead to getting "stuck in a loop"?
– Travis
Nov 18 at 19:18
@Travis let theta=x so it's quicker for me to type... so, after the first IBP i get sin(x)sin(nx) - Intergral [n(sin(x)cos(nx))]. when i use IBP on this integral i get sin(x)sin(nx) - Integral [cos(x)sin(nx)] which is what i originally tried to integrate ..
– Taylor
Nov 18 at 19:48
@T.Bongers i did try my best. i'm new to this.
– Taylor
Nov 18 at 19:48
I think that there are some non-Unicode symbols being included in the equation (to the right of the second equality).
– T. Bongers
Nov 18 at 19:49
|
show 3 more comments
1
Please format your question a bit more; there are apparently some unreadable characters.
– T. Bongers
Nov 18 at 19:04
Can you describe a little more the choices that lead to getting "stuck in a loop"?
– Travis
Nov 18 at 19:18
@Travis let theta=x so it's quicker for me to type... so, after the first IBP i get sin(x)sin(nx) - Intergral [n(sin(x)cos(nx))]. when i use IBP on this integral i get sin(x)sin(nx) - Integral [cos(x)sin(nx)] which is what i originally tried to integrate ..
– Taylor
Nov 18 at 19:48
@T.Bongers i did try my best. i'm new to this.
– Taylor
Nov 18 at 19:48
I think that there are some non-Unicode symbols being included in the equation (to the right of the second equality).
– T. Bongers
Nov 18 at 19:49
1
1
Please format your question a bit more; there are apparently some unreadable characters.
– T. Bongers
Nov 18 at 19:04
Please format your question a bit more; there are apparently some unreadable characters.
– T. Bongers
Nov 18 at 19:04
Can you describe a little more the choices that lead to getting "stuck in a loop"?
– Travis
Nov 18 at 19:18
Can you describe a little more the choices that lead to getting "stuck in a loop"?
– Travis
Nov 18 at 19:18
@Travis let theta=x so it's quicker for me to type... so, after the first IBP i get sin(x)sin(nx) - Intergral [n(sin(x)cos(nx))]. when i use IBP on this integral i get sin(x)sin(nx) - Integral [cos(x)sin(nx)] which is what i originally tried to integrate ..
– Taylor
Nov 18 at 19:48
@Travis let theta=x so it's quicker for me to type... so, after the first IBP i get sin(x)sin(nx) - Intergral [n(sin(x)cos(nx))]. when i use IBP on this integral i get sin(x)sin(nx) - Integral [cos(x)sin(nx)] which is what i originally tried to integrate ..
– Taylor
Nov 18 at 19:48
@T.Bongers i did try my best. i'm new to this.
– Taylor
Nov 18 at 19:48
@T.Bongers i did try my best. i'm new to this.
– Taylor
Nov 18 at 19:48
I think that there are some non-Unicode symbols being included in the equation (to the right of the second equality).
– T. Bongers
Nov 18 at 19:49
I think that there are some non-Unicode symbols being included in the equation (to the right of the second equality).
– T. Bongers
Nov 18 at 19:49
|
show 3 more comments
3 Answers
3
active
oldest
votes
Hint Following what you've done already, integrating by parts with $u = sin n theta$, $dv = cos theta ,dtheta$ gives
begin{multline}color{#df0000}{I_n} = underbrace{sin n theta}_u , underbrace{sin theta}_v vert_0^{pi / 2} - int_0^{pi / 2} underbrace{sin theta}_v , underbrace{cos ntheta , dtheta}_{du} = sin frac{pi n}{2} - n color{#1f1fff}{J_n}, \ color{#1f1fff}{J_n := int_0^{pi / 2} cos n theta sin theta , dtheta} .end{multline}
We now apply integration by parts to the integral $color{#3f3fff}{J_n}$ with $p = cos n theta$, $dq = sin theta ,dtheta$:
$$color{#3f3fff}{J_n} = cos n theta (-cos theta)vert_0^{pi / 2} - int_0^{pi / 2} underbrace{-cos theta}_q cdot underbrace{- n sin n theta ,dtheta}_{dp} = 1 - n color{#df0000}{I_n} .$$
Substituting to eliminate $color{#3f3fff}{J_n}$ gives $color{#df0000}{I_n} = sin frac{pi n}{2} - n (1 - n color{#df0000}{I_n})$, and rearranging to solve for $color{#df0000}{I_n}$ gives the claimed identity: $$color{#df0000}{boxed{I_n = frac{n - sin frac{pi n}{2}}{n^2 - 1}}} .$$ Notice that for $n equiv 0, 2 pmod 4$ this simplifies to $frac{n}{n^2 - 1}$, for $n equiv 1 pmod 4$ to $frac{1}{n + 1}$, and for $n equiv 3 pmod 4$ to $frac{1}{n - 1}$.
add a comment |
$$cos{(x)} sin{left( n xright) }=frac{sin{left( left( n+1right) xright) }+sin{left( left( n-1right) xright) }}{2}$$
$$int{left. cos{(x)} sin{left( n xright) }dxright.}=-frac{cos{left( left( n+1right) xright) }}{2 left( n+1right) }-frac{cos{left( left( n-1right) xright) }}{2 left( n-1right) }$$
Then
$$int_{0}^{frac{pi}{2}}{left. cos{(x)} sin{left( n xright) }dxright.}\=
frac{n}{n^2-1}-frac{left( n-1right) cos{left( frac{{pi} n+{pi} }{2}right) }+left( n+1right) cos{left( frac{{pi} n-{pi} }{2}right) }}{2n^2-2}\=
frac{n}{{{n}^{2}}-1}-frac{sin{left( frac{{pi} n}{2}right) }}{{{n}^{2}}-1}$$
add a comment |
Hint:
There's an escape from the infinite loop. If you observe closely, you will see that after two iterations you get to something like
$$I=b+aI$$
where the constants $a,b$ are computable.
You naturally conclude
$$I=frac{b}{1-a}.$$
$$intsin nthetacostheta,dtheta=sin nthetasintheta-nintcos nthetasintheta,dtheta\=sin nthetasintheta+ncos nthetacostheta+n^2intsin nthetacostheta,dtheta.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003982%2fevaluate-i-n-int-0-pi-2-sin-n-theta-cos-theta-d-theta-by-integra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint Following what you've done already, integrating by parts with $u = sin n theta$, $dv = cos theta ,dtheta$ gives
begin{multline}color{#df0000}{I_n} = underbrace{sin n theta}_u , underbrace{sin theta}_v vert_0^{pi / 2} - int_0^{pi / 2} underbrace{sin theta}_v , underbrace{cos ntheta , dtheta}_{du} = sin frac{pi n}{2} - n color{#1f1fff}{J_n}, \ color{#1f1fff}{J_n := int_0^{pi / 2} cos n theta sin theta , dtheta} .end{multline}
We now apply integration by parts to the integral $color{#3f3fff}{J_n}$ with $p = cos n theta$, $dq = sin theta ,dtheta$:
$$color{#3f3fff}{J_n} = cos n theta (-cos theta)vert_0^{pi / 2} - int_0^{pi / 2} underbrace{-cos theta}_q cdot underbrace{- n sin n theta ,dtheta}_{dp} = 1 - n color{#df0000}{I_n} .$$
Substituting to eliminate $color{#3f3fff}{J_n}$ gives $color{#df0000}{I_n} = sin frac{pi n}{2} - n (1 - n color{#df0000}{I_n})$, and rearranging to solve for $color{#df0000}{I_n}$ gives the claimed identity: $$color{#df0000}{boxed{I_n = frac{n - sin frac{pi n}{2}}{n^2 - 1}}} .$$ Notice that for $n equiv 0, 2 pmod 4$ this simplifies to $frac{n}{n^2 - 1}$, for $n equiv 1 pmod 4$ to $frac{1}{n + 1}$, and for $n equiv 3 pmod 4$ to $frac{1}{n - 1}$.
add a comment |
Hint Following what you've done already, integrating by parts with $u = sin n theta$, $dv = cos theta ,dtheta$ gives
begin{multline}color{#df0000}{I_n} = underbrace{sin n theta}_u , underbrace{sin theta}_v vert_0^{pi / 2} - int_0^{pi / 2} underbrace{sin theta}_v , underbrace{cos ntheta , dtheta}_{du} = sin frac{pi n}{2} - n color{#1f1fff}{J_n}, \ color{#1f1fff}{J_n := int_0^{pi / 2} cos n theta sin theta , dtheta} .end{multline}
We now apply integration by parts to the integral $color{#3f3fff}{J_n}$ with $p = cos n theta$, $dq = sin theta ,dtheta$:
$$color{#3f3fff}{J_n} = cos n theta (-cos theta)vert_0^{pi / 2} - int_0^{pi / 2} underbrace{-cos theta}_q cdot underbrace{- n sin n theta ,dtheta}_{dp} = 1 - n color{#df0000}{I_n} .$$
Substituting to eliminate $color{#3f3fff}{J_n}$ gives $color{#df0000}{I_n} = sin frac{pi n}{2} - n (1 - n color{#df0000}{I_n})$, and rearranging to solve for $color{#df0000}{I_n}$ gives the claimed identity: $$color{#df0000}{boxed{I_n = frac{n - sin frac{pi n}{2}}{n^2 - 1}}} .$$ Notice that for $n equiv 0, 2 pmod 4$ this simplifies to $frac{n}{n^2 - 1}$, for $n equiv 1 pmod 4$ to $frac{1}{n + 1}$, and for $n equiv 3 pmod 4$ to $frac{1}{n - 1}$.
add a comment |
Hint Following what you've done already, integrating by parts with $u = sin n theta$, $dv = cos theta ,dtheta$ gives
begin{multline}color{#df0000}{I_n} = underbrace{sin n theta}_u , underbrace{sin theta}_v vert_0^{pi / 2} - int_0^{pi / 2} underbrace{sin theta}_v , underbrace{cos ntheta , dtheta}_{du} = sin frac{pi n}{2} - n color{#1f1fff}{J_n}, \ color{#1f1fff}{J_n := int_0^{pi / 2} cos n theta sin theta , dtheta} .end{multline}
We now apply integration by parts to the integral $color{#3f3fff}{J_n}$ with $p = cos n theta$, $dq = sin theta ,dtheta$:
$$color{#3f3fff}{J_n} = cos n theta (-cos theta)vert_0^{pi / 2} - int_0^{pi / 2} underbrace{-cos theta}_q cdot underbrace{- n sin n theta ,dtheta}_{dp} = 1 - n color{#df0000}{I_n} .$$
Substituting to eliminate $color{#3f3fff}{J_n}$ gives $color{#df0000}{I_n} = sin frac{pi n}{2} - n (1 - n color{#df0000}{I_n})$, and rearranging to solve for $color{#df0000}{I_n}$ gives the claimed identity: $$color{#df0000}{boxed{I_n = frac{n - sin frac{pi n}{2}}{n^2 - 1}}} .$$ Notice that for $n equiv 0, 2 pmod 4$ this simplifies to $frac{n}{n^2 - 1}$, for $n equiv 1 pmod 4$ to $frac{1}{n + 1}$, and for $n equiv 3 pmod 4$ to $frac{1}{n - 1}$.
Hint Following what you've done already, integrating by parts with $u = sin n theta$, $dv = cos theta ,dtheta$ gives
begin{multline}color{#df0000}{I_n} = underbrace{sin n theta}_u , underbrace{sin theta}_v vert_0^{pi / 2} - int_0^{pi / 2} underbrace{sin theta}_v , underbrace{cos ntheta , dtheta}_{du} = sin frac{pi n}{2} - n color{#1f1fff}{J_n}, \ color{#1f1fff}{J_n := int_0^{pi / 2} cos n theta sin theta , dtheta} .end{multline}
We now apply integration by parts to the integral $color{#3f3fff}{J_n}$ with $p = cos n theta$, $dq = sin theta ,dtheta$:
$$color{#3f3fff}{J_n} = cos n theta (-cos theta)vert_0^{pi / 2} - int_0^{pi / 2} underbrace{-cos theta}_q cdot underbrace{- n sin n theta ,dtheta}_{dp} = 1 - n color{#df0000}{I_n} .$$
Substituting to eliminate $color{#3f3fff}{J_n}$ gives $color{#df0000}{I_n} = sin frac{pi n}{2} - n (1 - n color{#df0000}{I_n})$, and rearranging to solve for $color{#df0000}{I_n}$ gives the claimed identity: $$color{#df0000}{boxed{I_n = frac{n - sin frac{pi n}{2}}{n^2 - 1}}} .$$ Notice that for $n equiv 0, 2 pmod 4$ this simplifies to $frac{n}{n^2 - 1}$, for $n equiv 1 pmod 4$ to $frac{1}{n + 1}$, and for $n equiv 3 pmod 4$ to $frac{1}{n - 1}$.
edited Nov 25 at 7:23
answered Nov 18 at 21:27
Travis
59.4k767145
59.4k767145
add a comment |
add a comment |
$$cos{(x)} sin{left( n xright) }=frac{sin{left( left( n+1right) xright) }+sin{left( left( n-1right) xright) }}{2}$$
$$int{left. cos{(x)} sin{left( n xright) }dxright.}=-frac{cos{left( left( n+1right) xright) }}{2 left( n+1right) }-frac{cos{left( left( n-1right) xright) }}{2 left( n-1right) }$$
Then
$$int_{0}^{frac{pi}{2}}{left. cos{(x)} sin{left( n xright) }dxright.}\=
frac{n}{n^2-1}-frac{left( n-1right) cos{left( frac{{pi} n+{pi} }{2}right) }+left( n+1right) cos{left( frac{{pi} n-{pi} }{2}right) }}{2n^2-2}\=
frac{n}{{{n}^{2}}-1}-frac{sin{left( frac{{pi} n}{2}right) }}{{{n}^{2}}-1}$$
add a comment |
$$cos{(x)} sin{left( n xright) }=frac{sin{left( left( n+1right) xright) }+sin{left( left( n-1right) xright) }}{2}$$
$$int{left. cos{(x)} sin{left( n xright) }dxright.}=-frac{cos{left( left( n+1right) xright) }}{2 left( n+1right) }-frac{cos{left( left( n-1right) xright) }}{2 left( n-1right) }$$
Then
$$int_{0}^{frac{pi}{2}}{left. cos{(x)} sin{left( n xright) }dxright.}\=
frac{n}{n^2-1}-frac{left( n-1right) cos{left( frac{{pi} n+{pi} }{2}right) }+left( n+1right) cos{left( frac{{pi} n-{pi} }{2}right) }}{2n^2-2}\=
frac{n}{{{n}^{2}}-1}-frac{sin{left( frac{{pi} n}{2}right) }}{{{n}^{2}}-1}$$
add a comment |
$$cos{(x)} sin{left( n xright) }=frac{sin{left( left( n+1right) xright) }+sin{left( left( n-1right) xright) }}{2}$$
$$int{left. cos{(x)} sin{left( n xright) }dxright.}=-frac{cos{left( left( n+1right) xright) }}{2 left( n+1right) }-frac{cos{left( left( n-1right) xright) }}{2 left( n-1right) }$$
Then
$$int_{0}^{frac{pi}{2}}{left. cos{(x)} sin{left( n xright) }dxright.}\=
frac{n}{n^2-1}-frac{left( n-1right) cos{left( frac{{pi} n+{pi} }{2}right) }+left( n+1right) cos{left( frac{{pi} n-{pi} }{2}right) }}{2n^2-2}\=
frac{n}{{{n}^{2}}-1}-frac{sin{left( frac{{pi} n}{2}right) }}{{{n}^{2}}-1}$$
$$cos{(x)} sin{left( n xright) }=frac{sin{left( left( n+1right) xright) }+sin{left( left( n-1right) xright) }}{2}$$
$$int{left. cos{(x)} sin{left( n xright) }dxright.}=-frac{cos{left( left( n+1right) xright) }}{2 left( n+1right) }-frac{cos{left( left( n-1right) xright) }}{2 left( n-1right) }$$
Then
$$int_{0}^{frac{pi}{2}}{left. cos{(x)} sin{left( n xright) }dxright.}\=
frac{n}{n^2-1}-frac{left( n-1right) cos{left( frac{{pi} n+{pi} }{2}right) }+left( n+1right) cos{left( frac{{pi} n-{pi} }{2}right) }}{2n^2-2}\=
frac{n}{{{n}^{2}}-1}-frac{sin{left( frac{{pi} n}{2}right) }}{{{n}^{2}}-1}$$
answered Nov 18 at 20:11
Aleksas Domarkas
8286
8286
add a comment |
add a comment |
Hint:
There's an escape from the infinite loop. If you observe closely, you will see that after two iterations you get to something like
$$I=b+aI$$
where the constants $a,b$ are computable.
You naturally conclude
$$I=frac{b}{1-a}.$$
$$intsin nthetacostheta,dtheta=sin nthetasintheta-nintcos nthetasintheta,dtheta\=sin nthetasintheta+ncos nthetacostheta+n^2intsin nthetacostheta,dtheta.$$
add a comment |
Hint:
There's an escape from the infinite loop. If you observe closely, you will see that after two iterations you get to something like
$$I=b+aI$$
where the constants $a,b$ are computable.
You naturally conclude
$$I=frac{b}{1-a}.$$
$$intsin nthetacostheta,dtheta=sin nthetasintheta-nintcos nthetasintheta,dtheta\=sin nthetasintheta+ncos nthetacostheta+n^2intsin nthetacostheta,dtheta.$$
add a comment |
Hint:
There's an escape from the infinite loop. If you observe closely, you will see that after two iterations you get to something like
$$I=b+aI$$
where the constants $a,b$ are computable.
You naturally conclude
$$I=frac{b}{1-a}.$$
$$intsin nthetacostheta,dtheta=sin nthetasintheta-nintcos nthetasintheta,dtheta\=sin nthetasintheta+ncos nthetacostheta+n^2intsin nthetacostheta,dtheta.$$
Hint:
There's an escape from the infinite loop. If you observe closely, you will see that after two iterations you get to something like
$$I=b+aI$$
where the constants $a,b$ are computable.
You naturally conclude
$$I=frac{b}{1-a}.$$
$$intsin nthetacostheta,dtheta=sin nthetasintheta-nintcos nthetasintheta,dtheta\=sin nthetasintheta+ncos nthetacostheta+n^2intsin nthetacostheta,dtheta.$$
edited Nov 25 at 9:11
answered Nov 25 at 9:02
Yves Daoust
124k671220
124k671220
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003982%2fevaluate-i-n-int-0-pi-2-sin-n-theta-cos-theta-d-theta-by-integra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Please format your question a bit more; there are apparently some unreadable characters.
– T. Bongers
Nov 18 at 19:04
Can you describe a little more the choices that lead to getting "stuck in a loop"?
– Travis
Nov 18 at 19:18
@Travis let theta=x so it's quicker for me to type... so, after the first IBP i get sin(x)sin(nx) - Intergral [n(sin(x)cos(nx))]. when i use IBP on this integral i get sin(x)sin(nx) - Integral [cos(x)sin(nx)] which is what i originally tried to integrate ..
– Taylor
Nov 18 at 19:48
@T.Bongers i did try my best. i'm new to this.
– Taylor
Nov 18 at 19:48
I think that there are some non-Unicode symbols being included in the equation (to the right of the second equality).
– T. Bongers
Nov 18 at 19:49