Find a circle in which the integral sea different from zero












0














My function is $z^{2} hat z^{3}$
I don't know if this can be:
Taking the radio circle 2
begin{equation}
int z^{2} hat z^{3} dx = int frac{64}{z} dx
end{equation}

This because $z hat z= |z|^2 = 4$ but this happens twice, so $z hat z z hat z= |z|^2 = 16$ y then there is a $hat z$ without $z$ so $z hat z = 4 rightarrow hat z = frac{4}{z}$
but I do not know if this is valid










share|cite|improve this question



























    0














    My function is $z^{2} hat z^{3}$
    I don't know if this can be:
    Taking the radio circle 2
    begin{equation}
    int z^{2} hat z^{3} dx = int frac{64}{z} dx
    end{equation}

    This because $z hat z= |z|^2 = 4$ but this happens twice, so $z hat z z hat z= |z|^2 = 16$ y then there is a $hat z$ without $z$ so $z hat z = 4 rightarrow hat z = frac{4}{z}$
    but I do not know if this is valid










    share|cite|improve this question

























      0












      0








      0







      My function is $z^{2} hat z^{3}$
      I don't know if this can be:
      Taking the radio circle 2
      begin{equation}
      int z^{2} hat z^{3} dx = int frac{64}{z} dx
      end{equation}

      This because $z hat z= |z|^2 = 4$ but this happens twice, so $z hat z z hat z= |z|^2 = 16$ y then there is a $hat z$ without $z$ so $z hat z = 4 rightarrow hat z = frac{4}{z}$
      but I do not know if this is valid










      share|cite|improve this question













      My function is $z^{2} hat z^{3}$
      I don't know if this can be:
      Taking the radio circle 2
      begin{equation}
      int z^{2} hat z^{3} dx = int frac{64}{z} dx
      end{equation}

      This because $z hat z= |z|^2 = 4$ but this happens twice, so $z hat z z hat z= |z|^2 = 16$ y then there is a $hat z$ without $z$ so $z hat z = 4 rightarrow hat z = frac{4}{z}$
      but I do not know if this is valid







      integration complex-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 25 at 7:23









      Jazmín Jones

      519




      519






















          2 Answers
          2






          active

          oldest

          votes


















          2














          First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
          $$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$






          share|cite|improve this answer

















          • 2




            I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
            – Yadati Kiran
            Nov 25 at 7:47












          • $32cdot2pi i$ not $32pi i$.
            – Yadati Kiran
            Nov 25 at 8:37












          • can you explain the equality in more detail please
            – Jazmín Jones
            Nov 25 at 17:09










          • @JazminJones which one?
            – Guacho Perez
            Nov 25 at 18:06










          • Forget it thanks haha
            – Jazmín Jones
            Nov 25 at 18:14



















          0














          In your case the integrand is



          $$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral



          $$left.32iright|_0^{2pi}.$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012538%2ffind-a-circle-in-which-the-integral-sea-different-from-zero%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
            $$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$






            share|cite|improve this answer

















            • 2




              I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
              – Yadati Kiran
              Nov 25 at 7:47












            • $32cdot2pi i$ not $32pi i$.
              – Yadati Kiran
              Nov 25 at 8:37












            • can you explain the equality in more detail please
              – Jazmín Jones
              Nov 25 at 17:09










            • @JazminJones which one?
              – Guacho Perez
              Nov 25 at 18:06










            • Forget it thanks haha
              – Jazmín Jones
              Nov 25 at 18:14
















            2














            First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
            $$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$






            share|cite|improve this answer

















            • 2




              I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
              – Yadati Kiran
              Nov 25 at 7:47












            • $32cdot2pi i$ not $32pi i$.
              – Yadati Kiran
              Nov 25 at 8:37












            • can you explain the equality in more detail please
              – Jazmín Jones
              Nov 25 at 17:09










            • @JazminJones which one?
              – Guacho Perez
              Nov 25 at 18:06










            • Forget it thanks haha
              – Jazmín Jones
              Nov 25 at 18:14














            2












            2








            2






            First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
            $$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$






            share|cite|improve this answer












            First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
            $$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 25 at 7:38









            Guacho Perez

            3,79711131




            3,79711131








            • 2




              I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
              – Yadati Kiran
              Nov 25 at 7:47












            • $32cdot2pi i$ not $32pi i$.
              – Yadati Kiran
              Nov 25 at 8:37












            • can you explain the equality in more detail please
              – Jazmín Jones
              Nov 25 at 17:09










            • @JazminJones which one?
              – Guacho Perez
              Nov 25 at 18:06










            • Forget it thanks haha
              – Jazmín Jones
              Nov 25 at 18:14














            • 2




              I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
              – Yadati Kiran
              Nov 25 at 7:47












            • $32cdot2pi i$ not $32pi i$.
              – Yadati Kiran
              Nov 25 at 8:37












            • can you explain the equality in more detail please
              – Jazmín Jones
              Nov 25 at 17:09










            • @JazminJones which one?
              – Guacho Perez
              Nov 25 at 18:06










            • Forget it thanks haha
              – Jazmín Jones
              Nov 25 at 18:14








            2




            2




            I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
            – Yadati Kiran
            Nov 25 at 7:47






            I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
            – Yadati Kiran
            Nov 25 at 7:47














            $32cdot2pi i$ not $32pi i$.
            – Yadati Kiran
            Nov 25 at 8:37






            $32cdot2pi i$ not $32pi i$.
            – Yadati Kiran
            Nov 25 at 8:37














            can you explain the equality in more detail please
            – Jazmín Jones
            Nov 25 at 17:09




            can you explain the equality in more detail please
            – Jazmín Jones
            Nov 25 at 17:09












            @JazminJones which one?
            – Guacho Perez
            Nov 25 at 18:06




            @JazminJones which one?
            – Guacho Perez
            Nov 25 at 18:06












            Forget it thanks haha
            – Jazmín Jones
            Nov 25 at 18:14




            Forget it thanks haha
            – Jazmín Jones
            Nov 25 at 18:14











            0














            In your case the integrand is



            $$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral



            $$left.32iright|_0^{2pi}.$$






            share|cite|improve this answer


























              0














              In your case the integrand is



              $$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral



              $$left.32iright|_0^{2pi}.$$






              share|cite|improve this answer
























                0












                0








                0






                In your case the integrand is



                $$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral



                $$left.32iright|_0^{2pi}.$$






                share|cite|improve this answer












                In your case the integrand is



                $$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral



                $$left.32iright|_0^{2pi}.$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 25 at 8:25









                Yves Daoust

                124k671220




                124k671220






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012538%2ffind-a-circle-in-which-the-integral-sea-different-from-zero%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Le Mesnil-Réaume

                    Ida-Boy-Ed-Garten

                    web3.py web3.isConnected() returns false always