Find a circle in which the integral sea different from zero
My function is $z^{2} hat z^{3}$
I don't know if this can be:
Taking the radio circle 2
begin{equation}
int z^{2} hat z^{3} dx = int frac{64}{z} dx
end{equation}
This because $z hat z= |z|^2 = 4$ but this happens twice, so $z hat z z hat z= |z|^2 = 16$ y then there is a $hat z$ without $z$ so $z hat z = 4 rightarrow hat z = frac{4}{z}$
but I do not know if this is valid
integration complex-analysis
add a comment |
My function is $z^{2} hat z^{3}$
I don't know if this can be:
Taking the radio circle 2
begin{equation}
int z^{2} hat z^{3} dx = int frac{64}{z} dx
end{equation}
This because $z hat z= |z|^2 = 4$ but this happens twice, so $z hat z z hat z= |z|^2 = 16$ y then there is a $hat z$ without $z$ so $z hat z = 4 rightarrow hat z = frac{4}{z}$
but I do not know if this is valid
integration complex-analysis
add a comment |
My function is $z^{2} hat z^{3}$
I don't know if this can be:
Taking the radio circle 2
begin{equation}
int z^{2} hat z^{3} dx = int frac{64}{z} dx
end{equation}
This because $z hat z= |z|^2 = 4$ but this happens twice, so $z hat z z hat z= |z|^2 = 16$ y then there is a $hat z$ without $z$ so $z hat z = 4 rightarrow hat z = frac{4}{z}$
but I do not know if this is valid
integration complex-analysis
My function is $z^{2} hat z^{3}$
I don't know if this can be:
Taking the radio circle 2
begin{equation}
int z^{2} hat z^{3} dx = int frac{64}{z} dx
end{equation}
This because $z hat z= |z|^2 = 4$ but this happens twice, so $z hat z z hat z= |z|^2 = 16$ y then there is a $hat z$ without $z$ so $z hat z = 4 rightarrow hat z = frac{4}{z}$
but I do not know if this is valid
integration complex-analysis
integration complex-analysis
asked Nov 25 at 7:23
Jazmín Jones
519
519
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
$$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$
2
I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
– Yadati Kiran
Nov 25 at 7:47
$32cdot2pi i$ not $32pi i$.
– Yadati Kiran
Nov 25 at 8:37
can you explain the equality in more detail please
– Jazmín Jones
Nov 25 at 17:09
@JazminJones which one?
– Guacho Perez
Nov 25 at 18:06
Forget it thanks haha
– Jazmín Jones
Nov 25 at 18:14
add a comment |
In your case the integrand is
$$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral
$$left.32iright|_0^{2pi}.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012538%2ffind-a-circle-in-which-the-integral-sea-different-from-zero%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
$$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$
2
I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
– Yadati Kiran
Nov 25 at 7:47
$32cdot2pi i$ not $32pi i$.
– Yadati Kiran
Nov 25 at 8:37
can you explain the equality in more detail please
– Jazmín Jones
Nov 25 at 17:09
@JazminJones which one?
– Guacho Perez
Nov 25 at 18:06
Forget it thanks haha
– Jazmín Jones
Nov 25 at 18:14
add a comment |
First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
$$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$
2
I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
– Yadati Kiran
Nov 25 at 7:47
$32cdot2pi i$ not $32pi i$.
– Yadati Kiran
Nov 25 at 8:37
can you explain the equality in more detail please
– Jazmín Jones
Nov 25 at 17:09
@JazminJones which one?
– Guacho Perez
Nov 25 at 18:06
Forget it thanks haha
– Jazmín Jones
Nov 25 at 18:14
add a comment |
First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
$$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$
First, $z^2bar z^3=(zbar z)^2bar z=|z|^4bar z$ so using the unit circle $gamma=e^{it}$ gives
$$ int_{gamma}|z|^4bar z dz=int_0^{2pi} e^{-it}ie^{it}dt=2pi i$$
answered Nov 25 at 7:38
Guacho Perez
3,79711131
3,79711131
2
I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
– Yadati Kiran
Nov 25 at 7:47
$32cdot2pi i$ not $32pi i$.
– Yadati Kiran
Nov 25 at 8:37
can you explain the equality in more detail please
– Jazmín Jones
Nov 25 at 17:09
@JazminJones which one?
– Guacho Perez
Nov 25 at 18:06
Forget it thanks haha
– Jazmín Jones
Nov 25 at 18:14
add a comment |
2
I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
– Yadati Kiran
Nov 25 at 7:47
$32cdot2pi i$ not $32pi i$.
– Yadati Kiran
Nov 25 at 8:37
can you explain the equality in more detail please
– Jazmín Jones
Nov 25 at 17:09
@JazminJones which one?
– Guacho Perez
Nov 25 at 18:06
Forget it thanks haha
– Jazmín Jones
Nov 25 at 18:14
2
2
I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
– Yadati Kiran
Nov 25 at 7:47
I guess @JazminJones mentioned "radius of circle being 2". So if thats the case $gamma=2e^{it}$ and the integral evaluates to $32pi i$.
– Yadati Kiran
Nov 25 at 7:47
$32cdot2pi i$ not $32pi i$.
– Yadati Kiran
Nov 25 at 8:37
$32cdot2pi i$ not $32pi i$.
– Yadati Kiran
Nov 25 at 8:37
can you explain the equality in more detail please
– Jazmín Jones
Nov 25 at 17:09
can you explain the equality in more detail please
– Jazmín Jones
Nov 25 at 17:09
@JazminJones which one?
– Guacho Perez
Nov 25 at 18:06
@JazminJones which one?
– Guacho Perez
Nov 25 at 18:06
Forget it thanks haha
– Jazmín Jones
Nov 25 at 18:14
Forget it thanks haha
– Jazmín Jones
Nov 25 at 18:14
add a comment |
In your case the integrand is
$$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral
$$left.32iright|_0^{2pi}.$$
add a comment |
In your case the integrand is
$$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral
$$left.32iright|_0^{2pi}.$$
add a comment |
In your case the integrand is
$$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral
$$left.32iright|_0^{2pi}.$$
In your case the integrand is
$$(rho e^{itheta})^2(rho e^{-itheta})^3de^{itheta}=2^5e^{-itheta}de^{itheta}$$ giving the integral
$$left.32iright|_0^{2pi}.$$
answered Nov 25 at 8:25
Yves Daoust
124k671220
124k671220
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012538%2ffind-a-circle-in-which-the-integral-sea-different-from-zero%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown