CDF of a ratio of exponential variables












6












$begingroup$


Let $X$ and $Y$ be independent exponential variables with rates $alpha$ and $beta$, respectively. Find the CDF of $X/Y$.



I tried out the problem, and wanted to check to see if my answer of: $frac{alpha}{ beta/t + alpha}$ is correct, where $t$ is the time, which we need in our final answer since we need a cdf.



Can someone verify if this is correct?










share|cite|improve this question











$endgroup$

















    6












    $begingroup$


    Let $X$ and $Y$ be independent exponential variables with rates $alpha$ and $beta$, respectively. Find the CDF of $X/Y$.



    I tried out the problem, and wanted to check to see if my answer of: $frac{alpha}{ beta/t + alpha}$ is correct, where $t$ is the time, which we need in our final answer since we need a cdf.



    Can someone verify if this is correct?










    share|cite|improve this question











    $endgroup$















      6












      6








      6


      0



      $begingroup$


      Let $X$ and $Y$ be independent exponential variables with rates $alpha$ and $beta$, respectively. Find the CDF of $X/Y$.



      I tried out the problem, and wanted to check to see if my answer of: $frac{alpha}{ beta/t + alpha}$ is correct, where $t$ is the time, which we need in our final answer since we need a cdf.



      Can someone verify if this is correct?










      share|cite|improve this question











      $endgroup$




      Let $X$ and $Y$ be independent exponential variables with rates $alpha$ and $beta$, respectively. Find the CDF of $X/Y$.



      I tried out the problem, and wanted to check to see if my answer of: $frac{alpha}{ beta/t + alpha}$ is correct, where $t$ is the time, which we need in our final answer since we need a cdf.



      Can someone verify if this is correct?







      statistics probability-distributions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 '12 at 0:04









      Srivatsan

      20.9k371125




      20.9k371125










      asked Apr 19 '11 at 4:50









      marymary

      48921448




      48921448






















          3 Answers
          3






          active

          oldest

          votes


















          13












          $begingroup$

          Recall one of the most important characterizations of the exponential distribution:




          The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.




          Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
          $$
          P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
          $$
          Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
          $$
          E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
          $$
          Substituting $gamma=beta/t$ yields the formula.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            What is the probability distribution function?
            $endgroup$
            – user
            Mar 11 '14 at 4:37






          • 4




            $begingroup$
            @user How to deduce the PDF from the CDF? Tell me...
            $endgroup$
            – Did
            Mar 11 '14 at 6:34










          • $begingroup$
            @Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
            $endgroup$
            – user35443
            Nov 1 '18 at 13:57










          • $begingroup$
            @user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
            $endgroup$
            – Did
            Nov 3 '18 at 14:56












          • $begingroup$
            Makes sense, thanks!
            $endgroup$
            – user35443
            Nov 4 '18 at 18:18



















          2












          $begingroup$

          Here's a slightly different point of view.
          begin{align}
          Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
          & = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
          & = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
          & = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
          end{align}
          This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            This is correct. I did the calculation and got the same answer.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Did you use u-substitutions, a lot of them?
              $endgroup$
              – mary
              Apr 19 '11 at 5:02










            • $begingroup$
              No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
              $endgroup$
              – GWu
              Apr 19 '11 at 5:03













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f33778%2fcdf-of-a-ratio-of-exponential-variables%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            13












            $begingroup$

            Recall one of the most important characterizations of the exponential distribution:




            The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.




            Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
            $$
            P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
            $$
            Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
            $$
            E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
            $$
            Substituting $gamma=beta/t$ yields the formula.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              What is the probability distribution function?
              $endgroup$
              – user
              Mar 11 '14 at 4:37






            • 4




              $begingroup$
              @user How to deduce the PDF from the CDF? Tell me...
              $endgroup$
              – Did
              Mar 11 '14 at 6:34










            • $begingroup$
              @Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
              $endgroup$
              – user35443
              Nov 1 '18 at 13:57










            • $begingroup$
              @user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
              $endgroup$
              – Did
              Nov 3 '18 at 14:56












            • $begingroup$
              Makes sense, thanks!
              $endgroup$
              – user35443
              Nov 4 '18 at 18:18
















            13












            $begingroup$

            Recall one of the most important characterizations of the exponential distribution:




            The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.




            Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
            $$
            P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
            $$
            Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
            $$
            E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
            $$
            Substituting $gamma=beta/t$ yields the formula.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              What is the probability distribution function?
              $endgroup$
              – user
              Mar 11 '14 at 4:37






            • 4




              $begingroup$
              @user How to deduce the PDF from the CDF? Tell me...
              $endgroup$
              – Did
              Mar 11 '14 at 6:34










            • $begingroup$
              @Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
              $endgroup$
              – user35443
              Nov 1 '18 at 13:57










            • $begingroup$
              @user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
              $endgroup$
              – Did
              Nov 3 '18 at 14:56












            • $begingroup$
              Makes sense, thanks!
              $endgroup$
              – user35443
              Nov 4 '18 at 18:18














            13












            13








            13





            $begingroup$

            Recall one of the most important characterizations of the exponential distribution:




            The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.




            Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
            $$
            P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
            $$
            Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
            $$
            E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
            $$
            Substituting $gamma=beta/t$ yields the formula.






            share|cite|improve this answer











            $endgroup$



            Recall one of the most important characterizations of the exponential distribution:




            The random variable $Y$ is exponentially distributed with rate $beta$ if and only if $P(Ygeqslant y)=mathrm{e}^{-beta y}$ for every $ygeqslant0$.




            Let $Z=X/Y$ and $tgt0$. Conditioning on $X$ and applying our characterization to $y=X/t$, one gets
            $$
            P(Zleqslant t)=P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t}).
            $$
            Now, the density of the distribution of $X$ is $alphamathrm{e}^{-alpha x}$ on $xgeqslant0$, hence for every $gammageqslant0$,
            $$
            E(mathrm{e}^{-gamma X})=int_0^{+infty}alphamathrm{e}^{-(alpha+gamma) x}mathrm{d}x=frac{alpha}{alpha+gamma}left[-mathrm{e}^{-(alpha+gamma) x}right]_{0}^{+infty}=frac{alpha}{alpha+gamma}.
            $$
            Substituting $gamma=beta/t$ yields the formula.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jun 6 '13 at 6:54

























            answered Apr 19 '11 at 5:46









            DidDid

            247k23222458




            247k23222458












            • $begingroup$
              What is the probability distribution function?
              $endgroup$
              – user
              Mar 11 '14 at 4:37






            • 4




              $begingroup$
              @user How to deduce the PDF from the CDF? Tell me...
              $endgroup$
              – Did
              Mar 11 '14 at 6:34










            • $begingroup$
              @Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
              $endgroup$
              – user35443
              Nov 1 '18 at 13:57










            • $begingroup$
              @user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
              $endgroup$
              – Did
              Nov 3 '18 at 14:56












            • $begingroup$
              Makes sense, thanks!
              $endgroup$
              – user35443
              Nov 4 '18 at 18:18


















            • $begingroup$
              What is the probability distribution function?
              $endgroup$
              – user
              Mar 11 '14 at 4:37






            • 4




              $begingroup$
              @user How to deduce the PDF from the CDF? Tell me...
              $endgroup$
              – Did
              Mar 11 '14 at 6:34










            • $begingroup$
              @Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
              $endgroup$
              – user35443
              Nov 1 '18 at 13:57










            • $begingroup$
              @user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
              $endgroup$
              – Did
              Nov 3 '18 at 14:56












            • $begingroup$
              Makes sense, thanks!
              $endgroup$
              – user35443
              Nov 4 '18 at 18:18
















            $begingroup$
            What is the probability distribution function?
            $endgroup$
            – user
            Mar 11 '14 at 4:37




            $begingroup$
            What is the probability distribution function?
            $endgroup$
            – user
            Mar 11 '14 at 4:37




            4




            4




            $begingroup$
            @user How to deduce the PDF from the CDF? Tell me...
            $endgroup$
            – Did
            Mar 11 '14 at 6:34




            $begingroup$
            @user How to deduce the PDF from the CDF? Tell me...
            $endgroup$
            – Did
            Mar 11 '14 at 6:34












            $begingroup$
            @Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
            $endgroup$
            – user35443
            Nov 1 '18 at 13:57




            $begingroup$
            @Did how did you arrive to $P(Ygeqslant X/t)=E(mathrm{e}^{-beta X/t})$. How is the probability and expectation related?
            $endgroup$
            – user35443
            Nov 1 '18 at 13:57












            $begingroup$
            @user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
            $endgroup$
            – Did
            Nov 3 '18 at 14:56






            $begingroup$
            @user35443 For every $xgeqslant0$, $P(Ygeqslant x/t)=e^{-beta x/t}$. Now, $X$ is independent of $Y$ hence $P(Ygeqslant X/tmid X)=e^{-beta X/t}$ almost surely. Finally, take expectations on both sides.
            $endgroup$
            – Did
            Nov 3 '18 at 14:56














            $begingroup$
            Makes sense, thanks!
            $endgroup$
            – user35443
            Nov 4 '18 at 18:18




            $begingroup$
            Makes sense, thanks!
            $endgroup$
            – user35443
            Nov 4 '18 at 18:18











            2












            $begingroup$

            Here's a slightly different point of view.
            begin{align}
            Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
            & = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
            & = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
            & = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
            end{align}
            This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              Here's a slightly different point of view.
              begin{align}
              Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
              & = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
              & = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
              & = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
              end{align}
              This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                Here's a slightly different point of view.
                begin{align}
                Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
                & = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
                & = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
                & = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
                end{align}
                This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$






                share|cite|improve this answer











                $endgroup$



                Here's a slightly different point of view.
                begin{align}
                Prleft( frac X Y ge t right) & = iintlimits_{{,(x,y),:, x,ge,ty,ge,0 ,}} e^{-alpha x} e^{-beta y} (alphabeta,d(x,y)) \[10pt]
                & = int_0^infty left( int_{ty}^infty e^{-alpha x} (alpha,dx) right) e^{-beta y} (beta,dy) \[10pt]
                & = int_0^infty (e^{-alpha ty}) e^{-beta y} (beta,dy) \[10pt]
                & = beta int_0^infty e^{-(alpha t+beta)y} , dy = frac beta {alpha t + beta}.
                end{align}
                This is $1$ minus the c.d.f. Find the c.d.f. and differentiate to get the p.d.f. on the interval $tge0.$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Sep 2 '18 at 18:09

























                answered Dec 21 '17 at 19:32









                Michael HardyMichael Hardy

                1




                1























                    1












                    $begingroup$

                    This is correct. I did the calculation and got the same answer.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Did you use u-substitutions, a lot of them?
                      $endgroup$
                      – mary
                      Apr 19 '11 at 5:02










                    • $begingroup$
                      No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
                      $endgroup$
                      – GWu
                      Apr 19 '11 at 5:03


















                    1












                    $begingroup$

                    This is correct. I did the calculation and got the same answer.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Did you use u-substitutions, a lot of them?
                      $endgroup$
                      – mary
                      Apr 19 '11 at 5:02










                    • $begingroup$
                      No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
                      $endgroup$
                      – GWu
                      Apr 19 '11 at 5:03
















                    1












                    1








                    1





                    $begingroup$

                    This is correct. I did the calculation and got the same answer.






                    share|cite|improve this answer









                    $endgroup$



                    This is correct. I did the calculation and got the same answer.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 19 '11 at 5:01









                    GWuGWu

                    1,204710




                    1,204710












                    • $begingroup$
                      Did you use u-substitutions, a lot of them?
                      $endgroup$
                      – mary
                      Apr 19 '11 at 5:02










                    • $begingroup$
                      No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
                      $endgroup$
                      – GWu
                      Apr 19 '11 at 5:03




















                    • $begingroup$
                      Did you use u-substitutions, a lot of them?
                      $endgroup$
                      – mary
                      Apr 19 '11 at 5:02










                    • $begingroup$
                      No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
                      $endgroup$
                      – GWu
                      Apr 19 '11 at 5:03


















                    $begingroup$
                    Did you use u-substitutions, a lot of them?
                    $endgroup$
                    – mary
                    Apr 19 '11 at 5:02




                    $begingroup$
                    Did you use u-substitutions, a lot of them?
                    $endgroup$
                    – mary
                    Apr 19 '11 at 5:02












                    $begingroup$
                    No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
                    $endgroup$
                    – GWu
                    Apr 19 '11 at 5:03






                    $begingroup$
                    No, I used Mathematica :) If you do it by hand and you are not familiar with $int alpha e^{-alpha x} dx$ you might need a lot of substitutions.
                    $endgroup$
                    – GWu
                    Apr 19 '11 at 5:03




















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f33778%2fcdf-of-a-ratio-of-exponential-variables%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten