Proving a sequence of functions converges uniformly
$begingroup$
Let ${a_{n}}$ be a bounded sequence of numbers, and for each $n in
mathbb{N}$ and each number $x$, define
$$f_{n}(x) = a_{0} + a_{1}x + frac{a_{2}x^{2}}{2!} + cdots +
frac{a_{n}x^{n}}{n!}.$$
Prove that for each $r > 0,$ the sequence of functions ${f_{n} : [-r,
r] rightarrow mathbb{R}}$ is uniformly convergent.
My attempt:
Let $M$ be a bound for the sequence ${a_{n}}$. By definition, we have $|a_{n}| leq M$ for every natural number $n$. To show $sum_{k=0}^{infty} frac{a_{k}x^{k}}{k!}$ converges uniformly, we can just show $lim_{ntoinfty} sum_{i=n+1}^{infty}frac{a_{k}x^{k}}{k!} = 0$, which means that the convergence to $0$ is independent of $x$.
We have
$$lim_{ntoinfty} sum_{k=n+1}^{infty} frac{a_{k}x^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} left|frac{a_{k}x^{k}}{k!}right| $$
$$= lim_{ntoinfty} sum_{k=n+1}^{infty} frac{|a_{k}||x|^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} frac{Mr^{k}}{k!} $$
$$= M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!}.$$
But since $sum_{k=0}^{infty} frac{r^{k}}{k!} = e^{r}$, we have
$$M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!} leq Me^{r}, $$
which proves that the convergence is uniform.
Is my proof right? What can I improve?
EDIT: It is wrong because we need the limit to equal $0$.
sequences-and-series functions proof-verification convergence uniform-convergence
$endgroup$
add a comment |
$begingroup$
Let ${a_{n}}$ be a bounded sequence of numbers, and for each $n in
mathbb{N}$ and each number $x$, define
$$f_{n}(x) = a_{0} + a_{1}x + frac{a_{2}x^{2}}{2!} + cdots +
frac{a_{n}x^{n}}{n!}.$$
Prove that for each $r > 0,$ the sequence of functions ${f_{n} : [-r,
r] rightarrow mathbb{R}}$ is uniformly convergent.
My attempt:
Let $M$ be a bound for the sequence ${a_{n}}$. By definition, we have $|a_{n}| leq M$ for every natural number $n$. To show $sum_{k=0}^{infty} frac{a_{k}x^{k}}{k!}$ converges uniformly, we can just show $lim_{ntoinfty} sum_{i=n+1}^{infty}frac{a_{k}x^{k}}{k!} = 0$, which means that the convergence to $0$ is independent of $x$.
We have
$$lim_{ntoinfty} sum_{k=n+1}^{infty} frac{a_{k}x^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} left|frac{a_{k}x^{k}}{k!}right| $$
$$= lim_{ntoinfty} sum_{k=n+1}^{infty} frac{|a_{k}||x|^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} frac{Mr^{k}}{k!} $$
$$= M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!}.$$
But since $sum_{k=0}^{infty} frac{r^{k}}{k!} = e^{r}$, we have
$$M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!} leq Me^{r}, $$
which proves that the convergence is uniform.
Is my proof right? What can I improve?
EDIT: It is wrong because we need the limit to equal $0$.
sequences-and-series functions proof-verification convergence uniform-convergence
$endgroup$
$begingroup$
"Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
$endgroup$
– xbh
Dec 3 '18 at 19:02
add a comment |
$begingroup$
Let ${a_{n}}$ be a bounded sequence of numbers, and for each $n in
mathbb{N}$ and each number $x$, define
$$f_{n}(x) = a_{0} + a_{1}x + frac{a_{2}x^{2}}{2!} + cdots +
frac{a_{n}x^{n}}{n!}.$$
Prove that for each $r > 0,$ the sequence of functions ${f_{n} : [-r,
r] rightarrow mathbb{R}}$ is uniformly convergent.
My attempt:
Let $M$ be a bound for the sequence ${a_{n}}$. By definition, we have $|a_{n}| leq M$ for every natural number $n$. To show $sum_{k=0}^{infty} frac{a_{k}x^{k}}{k!}$ converges uniformly, we can just show $lim_{ntoinfty} sum_{i=n+1}^{infty}frac{a_{k}x^{k}}{k!} = 0$, which means that the convergence to $0$ is independent of $x$.
We have
$$lim_{ntoinfty} sum_{k=n+1}^{infty} frac{a_{k}x^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} left|frac{a_{k}x^{k}}{k!}right| $$
$$= lim_{ntoinfty} sum_{k=n+1}^{infty} frac{|a_{k}||x|^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} frac{Mr^{k}}{k!} $$
$$= M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!}.$$
But since $sum_{k=0}^{infty} frac{r^{k}}{k!} = e^{r}$, we have
$$M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!} leq Me^{r}, $$
which proves that the convergence is uniform.
Is my proof right? What can I improve?
EDIT: It is wrong because we need the limit to equal $0$.
sequences-and-series functions proof-verification convergence uniform-convergence
$endgroup$
Let ${a_{n}}$ be a bounded sequence of numbers, and for each $n in
mathbb{N}$ and each number $x$, define
$$f_{n}(x) = a_{0} + a_{1}x + frac{a_{2}x^{2}}{2!} + cdots +
frac{a_{n}x^{n}}{n!}.$$
Prove that for each $r > 0,$ the sequence of functions ${f_{n} : [-r,
r] rightarrow mathbb{R}}$ is uniformly convergent.
My attempt:
Let $M$ be a bound for the sequence ${a_{n}}$. By definition, we have $|a_{n}| leq M$ for every natural number $n$. To show $sum_{k=0}^{infty} frac{a_{k}x^{k}}{k!}$ converges uniformly, we can just show $lim_{ntoinfty} sum_{i=n+1}^{infty}frac{a_{k}x^{k}}{k!} = 0$, which means that the convergence to $0$ is independent of $x$.
We have
$$lim_{ntoinfty} sum_{k=n+1}^{infty} frac{a_{k}x^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} left|frac{a_{k}x^{k}}{k!}right| $$
$$= lim_{ntoinfty} sum_{k=n+1}^{infty} frac{|a_{k}||x|^{k}}{k!} leq lim_{ntoinfty} sum_{k=n+1}^{infty} frac{Mr^{k}}{k!} $$
$$= M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!}.$$
But since $sum_{k=0}^{infty} frac{r^{k}}{k!} = e^{r}$, we have
$$M cdot lim_{ntoinfty} sum_{k=n+1}^{infty} frac{r^{k}}{k!} leq Me^{r}, $$
which proves that the convergence is uniform.
Is my proof right? What can I improve?
EDIT: It is wrong because we need the limit to equal $0$.
sequences-and-series functions proof-verification convergence uniform-convergence
sequences-and-series functions proof-verification convergence uniform-convergence
edited Dec 3 '18 at 18:49
joseph
asked Dec 3 '18 at 18:36
josephjoseph
510111
510111
$begingroup$
"Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
$endgroup$
– xbh
Dec 3 '18 at 19:02
add a comment |
$begingroup$
"Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
$endgroup$
– xbh
Dec 3 '18 at 19:02
$begingroup$
"Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
$endgroup$
– xbh
Dec 3 '18 at 19:02
$begingroup$
"Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
$endgroup$
– xbh
Dec 3 '18 at 19:02
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024490%2fproving-a-sequence-of-functions-converges-uniformly%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024490%2fproving-a-sequence-of-functions-converges-uniformly%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
"Since $sum_0^infty r^k/k! = mathrm e^r$, we have" $color{red}{lim_n sum_{n+1}^infty r^k/k! = 0}$. Also as an alternative, Weierstrass--$M$ test would work.
$endgroup$
– xbh
Dec 3 '18 at 19:02