Convert a DataFrame into Adjacency/Weights Matrix in R
I have a DataFrame, df
.
n
is a column denoting the number of groups in the x
column.x
is a column containing the comma-separated groups.
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
> df
n x
2 a, b
3 a, c, d
2 c, d
2 d, b
I would like to convert this DataFrame into a weights matrix where the row and column names are the unique values of the groups in df$c
, and the elements represent the number of times each of the groups appear together in df$c
.
The output should look like this:
m <- matrix(c(0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0), nrow = 4, ncol = 4)
rownames(m) <- letters[1:4]; colnames(m) <- letters[1:4]
> m
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
r matrix adjacency-matrix
add a comment |
I have a DataFrame, df
.
n
is a column denoting the number of groups in the x
column.x
is a column containing the comma-separated groups.
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
> df
n x
2 a, b
3 a, c, d
2 c, d
2 d, b
I would like to convert this DataFrame into a weights matrix where the row and column names are the unique values of the groups in df$c
, and the elements represent the number of times each of the groups appear together in df$c
.
The output should look like this:
m <- matrix(c(0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0), nrow = 4, ncol = 4)
rownames(m) <- letters[1:4]; colnames(m) <- letters[1:4]
> m
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
r matrix adjacency-matrix
1
your question is unclear. I can't seec
indf
. it only hasn
andx
– YOLO
4 hours ago
c is one of the x values. Its a frequency table of how often different letters appear in the same line in x
– RAB
4 hours ago
Do you mean df$x instead of df$c in the bolded part of the question?
– mikoontz
3 hours ago
add a comment |
I have a DataFrame, df
.
n
is a column denoting the number of groups in the x
column.x
is a column containing the comma-separated groups.
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
> df
n x
2 a, b
3 a, c, d
2 c, d
2 d, b
I would like to convert this DataFrame into a weights matrix where the row and column names are the unique values of the groups in df$c
, and the elements represent the number of times each of the groups appear together in df$c
.
The output should look like this:
m <- matrix(c(0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0), nrow = 4, ncol = 4)
rownames(m) <- letters[1:4]; colnames(m) <- letters[1:4]
> m
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
r matrix adjacency-matrix
I have a DataFrame, df
.
n
is a column denoting the number of groups in the x
column.x
is a column containing the comma-separated groups.
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
> df
n x
2 a, b
3 a, c, d
2 c, d
2 d, b
I would like to convert this DataFrame into a weights matrix where the row and column names are the unique values of the groups in df$c
, and the elements represent the number of times each of the groups appear together in df$c
.
The output should look like this:
m <- matrix(c(0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0), nrow = 4, ncol = 4)
rownames(m) <- letters[1:4]; colnames(m) <- letters[1:4]
> m
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
r matrix adjacency-matrix
r matrix adjacency-matrix
asked 5 hours ago
Rich PaulooRich Pauloo
2,188930
2,188930
1
your question is unclear. I can't seec
indf
. it only hasn
andx
– YOLO
4 hours ago
c is one of the x values. Its a frequency table of how often different letters appear in the same line in x
– RAB
4 hours ago
Do you mean df$x instead of df$c in the bolded part of the question?
– mikoontz
3 hours ago
add a comment |
1
your question is unclear. I can't seec
indf
. it only hasn
andx
– YOLO
4 hours ago
c is one of the x values. Its a frequency table of how often different letters appear in the same line in x
– RAB
4 hours ago
Do you mean df$x instead of df$c in the bolded part of the question?
– mikoontz
3 hours ago
1
1
your question is unclear. I can't see
c
in df
. it only has n
and x
– YOLO
4 hours ago
your question is unclear. I can't see
c
in df
. it only has n
and x
– YOLO
4 hours ago
c is one of the x values. Its a frequency table of how often different letters appear in the same line in x
– RAB
4 hours ago
c is one of the x values. Its a frequency table of how often different letters appear in the same line in x
– RAB
4 hours ago
Do you mean df$x instead of df$c in the bolded part of the question?
– mikoontz
3 hours ago
Do you mean df$x instead of df$c in the bolded part of the question?
– mikoontz
3 hours ago
add a comment |
3 Answers
3
active
oldest
votes
Here's a very rough and probably pretty inefficient solution using tidyverse
for wrangling and combinat
to generate permutations.
library(tidyverse)
library(combinat)
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
df %>%
## Parse entries in x into distinct elements
mutate(split = map(x, str_split, pattern = ', '),
flat = flatten(split)) %>%
## Construct 2-element subsets of each set of elements
mutate(combn = map(flat, combn, 2, simplify = FALSE)) %>%
unnest(combn) %>%
## Construct permutations of the 2-element subsets
mutate(perm = map(combn, permn)) %>%
unnest(perm) %>%
## Parse the permutations into row and column indices
mutate(row = map_chr(perm, 1),
col = map_chr(perm, 2)) %>%
count(row, col) %>%
## Long to wide representation
spread(key = col, value = nn, fill = 0) %>%
## Coerce to matrix
column_to_rownames(var = 'row') %>%
as.matrix()
add a comment |
Using Base R, you could do something like below
a = strsplit(as.character(df$x),', ')
b = unique(unlist(a))
d = unlist(sapply(a,combn,2,toString))
e = data.frame(table(factor(d,c(paste(b,b,sep=','),combn(b,2,toString)))))
f = read.table(text = do.call(paste,c(sep =',', e)),sep=',',strip.white = T)
g = xtabs(V3~V1+V2,f)
g[lower.tri(g)] = t(g)[lower.tri(g)]
g
V2
V1 a b c d
a 0 1 1 1
b 1 0 0 0
c 1 0 0 2
d 1 0 2 0
add a comment |
Here is another possible approach using data.table
:
#generate the combis
combis <- df[, transpose(combn(sort(strsplit(x, ", ")[[1L]]), 2L, simplify=FALSE)),
by=1L:df[,.N]]
#create new rows for identical letters within a pair
withDiag <- out[CJ(c(V1,V2), c(V1,V2), unique=TRUE), on=.(V1, V2)]
#duplicate the above for lower triangular part of the matrix
withLowerTri <- rbindlist(list(withDiag, withDiag[,.(df, V2, V1)]))
#pivot to get weights matrix
outDT <- dcast(withLowerTri, V1 ~ V2, function(x) sum(!is.na(x)), value.var="df")
outDT
output:
V1 a b c d
1: a 0 1 1 1
2: b 1 0 0 1
3: c 1 0 0 2
4: d 1 1 2 0
If matrix output is desired, then
mat <- as.matrix(outDT[, -1L])
rownames(mat) <- unlist(outDT[,1L])
output:
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54338215%2fconvert-a-dataframe-into-adjacency-weights-matrix-in-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Here's a very rough and probably pretty inefficient solution using tidyverse
for wrangling and combinat
to generate permutations.
library(tidyverse)
library(combinat)
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
df %>%
## Parse entries in x into distinct elements
mutate(split = map(x, str_split, pattern = ', '),
flat = flatten(split)) %>%
## Construct 2-element subsets of each set of elements
mutate(combn = map(flat, combn, 2, simplify = FALSE)) %>%
unnest(combn) %>%
## Construct permutations of the 2-element subsets
mutate(perm = map(combn, permn)) %>%
unnest(perm) %>%
## Parse the permutations into row and column indices
mutate(row = map_chr(perm, 1),
col = map_chr(perm, 2)) %>%
count(row, col) %>%
## Long to wide representation
spread(key = col, value = nn, fill = 0) %>%
## Coerce to matrix
column_to_rownames(var = 'row') %>%
as.matrix()
add a comment |
Here's a very rough and probably pretty inefficient solution using tidyverse
for wrangling and combinat
to generate permutations.
library(tidyverse)
library(combinat)
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
df %>%
## Parse entries in x into distinct elements
mutate(split = map(x, str_split, pattern = ', '),
flat = flatten(split)) %>%
## Construct 2-element subsets of each set of elements
mutate(combn = map(flat, combn, 2, simplify = FALSE)) %>%
unnest(combn) %>%
## Construct permutations of the 2-element subsets
mutate(perm = map(combn, permn)) %>%
unnest(perm) %>%
## Parse the permutations into row and column indices
mutate(row = map_chr(perm, 1),
col = map_chr(perm, 2)) %>%
count(row, col) %>%
## Long to wide representation
spread(key = col, value = nn, fill = 0) %>%
## Coerce to matrix
column_to_rownames(var = 'row') %>%
as.matrix()
add a comment |
Here's a very rough and probably pretty inefficient solution using tidyverse
for wrangling and combinat
to generate permutations.
library(tidyverse)
library(combinat)
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
df %>%
## Parse entries in x into distinct elements
mutate(split = map(x, str_split, pattern = ', '),
flat = flatten(split)) %>%
## Construct 2-element subsets of each set of elements
mutate(combn = map(flat, combn, 2, simplify = FALSE)) %>%
unnest(combn) %>%
## Construct permutations of the 2-element subsets
mutate(perm = map(combn, permn)) %>%
unnest(perm) %>%
## Parse the permutations into row and column indices
mutate(row = map_chr(perm, 1),
col = map_chr(perm, 2)) %>%
count(row, col) %>%
## Long to wide representation
spread(key = col, value = nn, fill = 0) %>%
## Coerce to matrix
column_to_rownames(var = 'row') %>%
as.matrix()
Here's a very rough and probably pretty inefficient solution using tidyverse
for wrangling and combinat
to generate permutations.
library(tidyverse)
library(combinat)
df <- data.frame(n = c(2, 3, 2, 2),
x = c("a, b", "a, c, d", "c, d", "d, b"))
df %>%
## Parse entries in x into distinct elements
mutate(split = map(x, str_split, pattern = ', '),
flat = flatten(split)) %>%
## Construct 2-element subsets of each set of elements
mutate(combn = map(flat, combn, 2, simplify = FALSE)) %>%
unnest(combn) %>%
## Construct permutations of the 2-element subsets
mutate(perm = map(combn, permn)) %>%
unnest(perm) %>%
## Parse the permutations into row and column indices
mutate(row = map_chr(perm, 1),
col = map_chr(perm, 2)) %>%
count(row, col) %>%
## Long to wide representation
spread(key = col, value = nn, fill = 0) %>%
## Coerce to matrix
column_to_rownames(var = 'row') %>%
as.matrix()
answered 4 hours ago
Dan HicksDan Hicks
1876
1876
add a comment |
add a comment |
Using Base R, you could do something like below
a = strsplit(as.character(df$x),', ')
b = unique(unlist(a))
d = unlist(sapply(a,combn,2,toString))
e = data.frame(table(factor(d,c(paste(b,b,sep=','),combn(b,2,toString)))))
f = read.table(text = do.call(paste,c(sep =',', e)),sep=',',strip.white = T)
g = xtabs(V3~V1+V2,f)
g[lower.tri(g)] = t(g)[lower.tri(g)]
g
V2
V1 a b c d
a 0 1 1 1
b 1 0 0 0
c 1 0 0 2
d 1 0 2 0
add a comment |
Using Base R, you could do something like below
a = strsplit(as.character(df$x),', ')
b = unique(unlist(a))
d = unlist(sapply(a,combn,2,toString))
e = data.frame(table(factor(d,c(paste(b,b,sep=','),combn(b,2,toString)))))
f = read.table(text = do.call(paste,c(sep =',', e)),sep=',',strip.white = T)
g = xtabs(V3~V1+V2,f)
g[lower.tri(g)] = t(g)[lower.tri(g)]
g
V2
V1 a b c d
a 0 1 1 1
b 1 0 0 0
c 1 0 0 2
d 1 0 2 0
add a comment |
Using Base R, you could do something like below
a = strsplit(as.character(df$x),', ')
b = unique(unlist(a))
d = unlist(sapply(a,combn,2,toString))
e = data.frame(table(factor(d,c(paste(b,b,sep=','),combn(b,2,toString)))))
f = read.table(text = do.call(paste,c(sep =',', e)),sep=',',strip.white = T)
g = xtabs(V3~V1+V2,f)
g[lower.tri(g)] = t(g)[lower.tri(g)]
g
V2
V1 a b c d
a 0 1 1 1
b 1 0 0 0
c 1 0 0 2
d 1 0 2 0
Using Base R, you could do something like below
a = strsplit(as.character(df$x),', ')
b = unique(unlist(a))
d = unlist(sapply(a,combn,2,toString))
e = data.frame(table(factor(d,c(paste(b,b,sep=','),combn(b,2,toString)))))
f = read.table(text = do.call(paste,c(sep =',', e)),sep=',',strip.white = T)
g = xtabs(V3~V1+V2,f)
g[lower.tri(g)] = t(g)[lower.tri(g)]
g
V2
V1 a b c d
a 0 1 1 1
b 1 0 0 0
c 1 0 0 2
d 1 0 2 0
answered 3 hours ago
OnyambuOnyambu
15.5k1520
15.5k1520
add a comment |
add a comment |
Here is another possible approach using data.table
:
#generate the combis
combis <- df[, transpose(combn(sort(strsplit(x, ", ")[[1L]]), 2L, simplify=FALSE)),
by=1L:df[,.N]]
#create new rows for identical letters within a pair
withDiag <- out[CJ(c(V1,V2), c(V1,V2), unique=TRUE), on=.(V1, V2)]
#duplicate the above for lower triangular part of the matrix
withLowerTri <- rbindlist(list(withDiag, withDiag[,.(df, V2, V1)]))
#pivot to get weights matrix
outDT <- dcast(withLowerTri, V1 ~ V2, function(x) sum(!is.na(x)), value.var="df")
outDT
output:
V1 a b c d
1: a 0 1 1 1
2: b 1 0 0 1
3: c 1 0 0 2
4: d 1 1 2 0
If matrix output is desired, then
mat <- as.matrix(outDT[, -1L])
rownames(mat) <- unlist(outDT[,1L])
output:
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
add a comment |
Here is another possible approach using data.table
:
#generate the combis
combis <- df[, transpose(combn(sort(strsplit(x, ", ")[[1L]]), 2L, simplify=FALSE)),
by=1L:df[,.N]]
#create new rows for identical letters within a pair
withDiag <- out[CJ(c(V1,V2), c(V1,V2), unique=TRUE), on=.(V1, V2)]
#duplicate the above for lower triangular part of the matrix
withLowerTri <- rbindlist(list(withDiag, withDiag[,.(df, V2, V1)]))
#pivot to get weights matrix
outDT <- dcast(withLowerTri, V1 ~ V2, function(x) sum(!is.na(x)), value.var="df")
outDT
output:
V1 a b c d
1: a 0 1 1 1
2: b 1 0 0 1
3: c 1 0 0 2
4: d 1 1 2 0
If matrix output is desired, then
mat <- as.matrix(outDT[, -1L])
rownames(mat) <- unlist(outDT[,1L])
output:
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
add a comment |
Here is another possible approach using data.table
:
#generate the combis
combis <- df[, transpose(combn(sort(strsplit(x, ", ")[[1L]]), 2L, simplify=FALSE)),
by=1L:df[,.N]]
#create new rows for identical letters within a pair
withDiag <- out[CJ(c(V1,V2), c(V1,V2), unique=TRUE), on=.(V1, V2)]
#duplicate the above for lower triangular part of the matrix
withLowerTri <- rbindlist(list(withDiag, withDiag[,.(df, V2, V1)]))
#pivot to get weights matrix
outDT <- dcast(withLowerTri, V1 ~ V2, function(x) sum(!is.na(x)), value.var="df")
outDT
output:
V1 a b c d
1: a 0 1 1 1
2: b 1 0 0 1
3: c 1 0 0 2
4: d 1 1 2 0
If matrix output is desired, then
mat <- as.matrix(outDT[, -1L])
rownames(mat) <- unlist(outDT[,1L])
output:
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
Here is another possible approach using data.table
:
#generate the combis
combis <- df[, transpose(combn(sort(strsplit(x, ", ")[[1L]]), 2L, simplify=FALSE)),
by=1L:df[,.N]]
#create new rows for identical letters within a pair
withDiag <- out[CJ(c(V1,V2), c(V1,V2), unique=TRUE), on=.(V1, V2)]
#duplicate the above for lower triangular part of the matrix
withLowerTri <- rbindlist(list(withDiag, withDiag[,.(df, V2, V1)]))
#pivot to get weights matrix
outDT <- dcast(withLowerTri, V1 ~ V2, function(x) sum(!is.na(x)), value.var="df")
outDT
output:
V1 a b c d
1: a 0 1 1 1
2: b 1 0 0 1
3: c 1 0 0 2
4: d 1 1 2 0
If matrix output is desired, then
mat <- as.matrix(outDT[, -1L])
rownames(mat) <- unlist(outDT[,1L])
output:
a b c d
a 0 1 1 1
b 1 0 0 1
c 1 0 0 2
d 1 1 2 0
answered 21 mins ago
chinsoon12chinsoon12
8,66111219
8,66111219
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54338215%2fconvert-a-dataframe-into-adjacency-weights-matrix-in-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
your question is unclear. I can't see
c
indf
. it only hasn
andx
– YOLO
4 hours ago
c is one of the x values. Its a frequency table of how often different letters appear in the same line in x
– RAB
4 hours ago
Do you mean df$x instead of df$c in the bolded part of the question?
– mikoontz
3 hours ago