Analogue of the Mean value theorem for holomorphic functions












2












$begingroup$


Let $f:mathbb{C}rightarrow mathbb{C}$ be entire. Let $w_1,w_2$ be any two distinct complex numbers. Must there exist $cin overline{B_{|w_2-w_1|}(w_1)}$ such that $f'(c)=frac{f(w_2)-f(w_1)}{w_2-w_1}$ ?



Note:



I have shown the folowing: Let $[w_1, w_2]$ be the line segment with endpoints $w_1,w_2$. Then there exists $c_1,c_2in [w_1,w_2]$ such that:
$$Re(f'(c_1))+Im(f'(c_2))i=frac{f(w_2)-f(w_1)}{w_2-w_1} ...(1)$$



I was wondering whether allowing $c_1,c_2$ to lie in $overline{B_{|w_2-w_1|}(w_1)}$ (instead of just the line segment joining $w_1,w_2$) enables us to choose $c_1,c_2$ such that $(1)$ holds and $c_1=c_2$.



Thank you










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
    $endgroup$
    – Daniel Fischer
    Jan 10 '14 at 18:38










  • $begingroup$
    @DanielFischer I don't understand the part : "and the two point-form ..."
    $endgroup$
    – Amr
    Jan 10 '14 at 18:43










  • $begingroup$
    Your equation $(1)$ in the Note:.
    $endgroup$
    – Daniel Fischer
    Jan 10 '14 at 18:44










  • $begingroup$
    @DanielFischer Ahhhhh :) Thanks a lot.
    $endgroup$
    – Amr
    Jan 10 '14 at 18:49
















2












$begingroup$


Let $f:mathbb{C}rightarrow mathbb{C}$ be entire. Let $w_1,w_2$ be any two distinct complex numbers. Must there exist $cin overline{B_{|w_2-w_1|}(w_1)}$ such that $f'(c)=frac{f(w_2)-f(w_1)}{w_2-w_1}$ ?



Note:



I have shown the folowing: Let $[w_1, w_2]$ be the line segment with endpoints $w_1,w_2$. Then there exists $c_1,c_2in [w_1,w_2]$ such that:
$$Re(f'(c_1))+Im(f'(c_2))i=frac{f(w_2)-f(w_1)}{w_2-w_1} ...(1)$$



I was wondering whether allowing $c_1,c_2$ to lie in $overline{B_{|w_2-w_1|}(w_1)}$ (instead of just the line segment joining $w_1,w_2$) enables us to choose $c_1,c_2$ such that $(1)$ holds and $c_1=c_2$.



Thank you










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
    $endgroup$
    – Daniel Fischer
    Jan 10 '14 at 18:38










  • $begingroup$
    @DanielFischer I don't understand the part : "and the two point-form ..."
    $endgroup$
    – Amr
    Jan 10 '14 at 18:43










  • $begingroup$
    Your equation $(1)$ in the Note:.
    $endgroup$
    – Daniel Fischer
    Jan 10 '14 at 18:44










  • $begingroup$
    @DanielFischer Ahhhhh :) Thanks a lot.
    $endgroup$
    – Amr
    Jan 10 '14 at 18:49














2












2








2


2



$begingroup$


Let $f:mathbb{C}rightarrow mathbb{C}$ be entire. Let $w_1,w_2$ be any two distinct complex numbers. Must there exist $cin overline{B_{|w_2-w_1|}(w_1)}$ such that $f'(c)=frac{f(w_2)-f(w_1)}{w_2-w_1}$ ?



Note:



I have shown the folowing: Let $[w_1, w_2]$ be the line segment with endpoints $w_1,w_2$. Then there exists $c_1,c_2in [w_1,w_2]$ such that:
$$Re(f'(c_1))+Im(f'(c_2))i=frac{f(w_2)-f(w_1)}{w_2-w_1} ...(1)$$



I was wondering whether allowing $c_1,c_2$ to lie in $overline{B_{|w_2-w_1|}(w_1)}$ (instead of just the line segment joining $w_1,w_2$) enables us to choose $c_1,c_2$ such that $(1)$ holds and $c_1=c_2$.



Thank you










share|cite|improve this question











$endgroup$




Let $f:mathbb{C}rightarrow mathbb{C}$ be entire. Let $w_1,w_2$ be any two distinct complex numbers. Must there exist $cin overline{B_{|w_2-w_1|}(w_1)}$ such that $f'(c)=frac{f(w_2)-f(w_1)}{w_2-w_1}$ ?



Note:



I have shown the folowing: Let $[w_1, w_2]$ be the line segment with endpoints $w_1,w_2$. Then there exists $c_1,c_2in [w_1,w_2]$ such that:
$$Re(f'(c_1))+Im(f'(c_2))i=frac{f(w_2)-f(w_1)}{w_2-w_1} ...(1)$$



I was wondering whether allowing $c_1,c_2$ to lie in $overline{B_{|w_2-w_1|}(w_1)}$ (instead of just the line segment joining $w_1,w_2$) enables us to choose $c_1,c_2$ such that $(1)$ holds and $c_1=c_2$.



Thank you







complex-analysis examples-counterexamples






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 11:26









Brahadeesh

6,46942363




6,46942363










asked Jan 10 '14 at 18:32









AmrAmr

14.4k43292




14.4k43292








  • 2




    $begingroup$
    No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
    $endgroup$
    – Daniel Fischer
    Jan 10 '14 at 18:38










  • $begingroup$
    @DanielFischer I don't understand the part : "and the two point-form ..."
    $endgroup$
    – Amr
    Jan 10 '14 at 18:43










  • $begingroup$
    Your equation $(1)$ in the Note:.
    $endgroup$
    – Daniel Fischer
    Jan 10 '14 at 18:44










  • $begingroup$
    @DanielFischer Ahhhhh :) Thanks a lot.
    $endgroup$
    – Amr
    Jan 10 '14 at 18:49














  • 2




    $begingroup$
    No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
    $endgroup$
    – Daniel Fischer
    Jan 10 '14 at 18:38










  • $begingroup$
    @DanielFischer I don't understand the part : "and the two point-form ..."
    $endgroup$
    – Amr
    Jan 10 '14 at 18:43










  • $begingroup$
    Your equation $(1)$ in the Note:.
    $endgroup$
    – Daniel Fischer
    Jan 10 '14 at 18:44










  • $begingroup$
    @DanielFischer Ahhhhh :) Thanks a lot.
    $endgroup$
    – Amr
    Jan 10 '14 at 18:49








2




2




$begingroup$
No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
$endgroup$
– Daniel Fischer
Jan 10 '14 at 18:38




$begingroup$
No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
$endgroup$
– Daniel Fischer
Jan 10 '14 at 18:38












$begingroup$
@DanielFischer I don't understand the part : "and the two point-form ..."
$endgroup$
– Amr
Jan 10 '14 at 18:43




$begingroup$
@DanielFischer I don't understand the part : "and the two point-form ..."
$endgroup$
– Amr
Jan 10 '14 at 18:43












$begingroup$
Your equation $(1)$ in the Note:.
$endgroup$
– Daniel Fischer
Jan 10 '14 at 18:44




$begingroup$
Your equation $(1)$ in the Note:.
$endgroup$
– Daniel Fischer
Jan 10 '14 at 18:44












$begingroup$
@DanielFischer Ahhhhh :) Thanks a lot.
$endgroup$
– Amr
Jan 10 '14 at 18:49




$begingroup$
@DanielFischer Ahhhhh :) Thanks a lot.
$endgroup$
– Amr
Jan 10 '14 at 18:49










1 Answer
1






active

oldest

votes


















5












$begingroup$

No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then



$$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$



but $f'(c) neq 0$ for all $cinmathbb{C}$.



What you have in terms of the mean value theorem for holomorphic functions is the estimate



$$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$



and your equation $(1)$ with generally different points for the real and imaginary part.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f633974%2fanalogue-of-the-mean-value-theorem-for-holomorphic-functions%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then



    $$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$



    but $f'(c) neq 0$ for all $cinmathbb{C}$.



    What you have in terms of the mean value theorem for holomorphic functions is the estimate



    $$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$



    and your equation $(1)$ with generally different points for the real and imaginary part.






    share|cite|improve this answer











    $endgroup$


















      5












      $begingroup$

      No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then



      $$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$



      but $f'(c) neq 0$ for all $cinmathbb{C}$.



      What you have in terms of the mean value theorem for holomorphic functions is the estimate



      $$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$



      and your equation $(1)$ with generally different points for the real and imaginary part.






      share|cite|improve this answer











      $endgroup$
















        5












        5








        5





        $begingroup$

        No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then



        $$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$



        but $f'(c) neq 0$ for all $cinmathbb{C}$.



        What you have in terms of the mean value theorem for holomorphic functions is the estimate



        $$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$



        and your equation $(1)$ with generally different points for the real and imaginary part.






        share|cite|improve this answer











        $endgroup$



        No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then



        $$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$



        but $f'(c) neq 0$ for all $cinmathbb{C}$.



        What you have in terms of the mean value theorem for holomorphic functions is the estimate



        $$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$



        and your equation $(1)$ with generally different points for the real and imaginary part.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 10 '14 at 21:36


























        community wiki





        2 revs, 2 users 85%
        Daniel Fischer































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f633974%2fanalogue-of-the-mean-value-theorem-for-holomorphic-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten