Analogue of the Mean value theorem for holomorphic functions
$begingroup$
Let $f:mathbb{C}rightarrow mathbb{C}$ be entire. Let $w_1,w_2$ be any two distinct complex numbers. Must there exist $cin overline{B_{|w_2-w_1|}(w_1)}$ such that $f'(c)=frac{f(w_2)-f(w_1)}{w_2-w_1}$ ?
Note:
I have shown the folowing: Let $[w_1, w_2]$ be the line segment with endpoints $w_1,w_2$. Then there exists $c_1,c_2in [w_1,w_2]$ such that:
$$Re(f'(c_1))+Im(f'(c_2))i=frac{f(w_2)-f(w_1)}{w_2-w_1} ...(1)$$
I was wondering whether allowing $c_1,c_2$ to lie in $overline{B_{|w_2-w_1|}(w_1)}$ (instead of just the line segment joining $w_1,w_2$) enables us to choose $c_1,c_2$ such that $(1)$ holds and $c_1=c_2$.
Thank you
complex-analysis examples-counterexamples
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb{C}rightarrow mathbb{C}$ be entire. Let $w_1,w_2$ be any two distinct complex numbers. Must there exist $cin overline{B_{|w_2-w_1|}(w_1)}$ such that $f'(c)=frac{f(w_2)-f(w_1)}{w_2-w_1}$ ?
Note:
I have shown the folowing: Let $[w_1, w_2]$ be the line segment with endpoints $w_1,w_2$. Then there exists $c_1,c_2in [w_1,w_2]$ such that:
$$Re(f'(c_1))+Im(f'(c_2))i=frac{f(w_2)-f(w_1)}{w_2-w_1} ...(1)$$
I was wondering whether allowing $c_1,c_2$ to lie in $overline{B_{|w_2-w_1|}(w_1)}$ (instead of just the line segment joining $w_1,w_2$) enables us to choose $c_1,c_2$ such that $(1)$ holds and $c_1=c_2$.
Thank you
complex-analysis examples-counterexamples
$endgroup$
2
$begingroup$
No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:38
$begingroup$
@DanielFischer I don't understand the part : "and the two point-form ..."
$endgroup$
– Amr
Jan 10 '14 at 18:43
$begingroup$
Your equation $(1)$ in the Note:.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:44
$begingroup$
@DanielFischer Ahhhhh :) Thanks a lot.
$endgroup$
– Amr
Jan 10 '14 at 18:49
add a comment |
$begingroup$
Let $f:mathbb{C}rightarrow mathbb{C}$ be entire. Let $w_1,w_2$ be any two distinct complex numbers. Must there exist $cin overline{B_{|w_2-w_1|}(w_1)}$ such that $f'(c)=frac{f(w_2)-f(w_1)}{w_2-w_1}$ ?
Note:
I have shown the folowing: Let $[w_1, w_2]$ be the line segment with endpoints $w_1,w_2$. Then there exists $c_1,c_2in [w_1,w_2]$ such that:
$$Re(f'(c_1))+Im(f'(c_2))i=frac{f(w_2)-f(w_1)}{w_2-w_1} ...(1)$$
I was wondering whether allowing $c_1,c_2$ to lie in $overline{B_{|w_2-w_1|}(w_1)}$ (instead of just the line segment joining $w_1,w_2$) enables us to choose $c_1,c_2$ such that $(1)$ holds and $c_1=c_2$.
Thank you
complex-analysis examples-counterexamples
$endgroup$
Let $f:mathbb{C}rightarrow mathbb{C}$ be entire. Let $w_1,w_2$ be any two distinct complex numbers. Must there exist $cin overline{B_{|w_2-w_1|}(w_1)}$ such that $f'(c)=frac{f(w_2)-f(w_1)}{w_2-w_1}$ ?
Note:
I have shown the folowing: Let $[w_1, w_2]$ be the line segment with endpoints $w_1,w_2$. Then there exists $c_1,c_2in [w_1,w_2]$ such that:
$$Re(f'(c_1))+Im(f'(c_2))i=frac{f(w_2)-f(w_1)}{w_2-w_1} ...(1)$$
I was wondering whether allowing $c_1,c_2$ to lie in $overline{B_{|w_2-w_1|}(w_1)}$ (instead of just the line segment joining $w_1,w_2$) enables us to choose $c_1,c_2$ such that $(1)$ holds and $c_1=c_2$.
Thank you
complex-analysis examples-counterexamples
complex-analysis examples-counterexamples
edited Dec 12 '18 at 11:26
Brahadeesh
6,46942363
6,46942363
asked Jan 10 '14 at 18:32
AmrAmr
14.4k43292
14.4k43292
2
$begingroup$
No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:38
$begingroup$
@DanielFischer I don't understand the part : "and the two point-form ..."
$endgroup$
– Amr
Jan 10 '14 at 18:43
$begingroup$
Your equation $(1)$ in the Note:.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:44
$begingroup$
@DanielFischer Ahhhhh :) Thanks a lot.
$endgroup$
– Amr
Jan 10 '14 at 18:49
add a comment |
2
$begingroup$
No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:38
$begingroup$
@DanielFischer I don't understand the part : "and the two point-form ..."
$endgroup$
– Amr
Jan 10 '14 at 18:43
$begingroup$
Your equation $(1)$ in the Note:.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:44
$begingroup$
@DanielFischer Ahhhhh :) Thanks a lot.
$endgroup$
– Amr
Jan 10 '14 at 18:49
2
2
$begingroup$
No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:38
$begingroup$
No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:38
$begingroup$
@DanielFischer I don't understand the part : "and the two point-form ..."
$endgroup$
– Amr
Jan 10 '14 at 18:43
$begingroup$
@DanielFischer I don't understand the part : "and the two point-form ..."
$endgroup$
– Amr
Jan 10 '14 at 18:43
$begingroup$
Your equation $(1)$ in the Note:.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:44
$begingroup$
Your equation $(1)$ in the Note:.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:44
$begingroup$
@DanielFischer Ahhhhh :) Thanks a lot.
$endgroup$
– Amr
Jan 10 '14 at 18:49
$begingroup$
@DanielFischer Ahhhhh :) Thanks a lot.
$endgroup$
– Amr
Jan 10 '14 at 18:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then
$$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$
but $f'(c) neq 0$ for all $cinmathbb{C}$.
What you have in terms of the mean value theorem for holomorphic functions is the estimate
$$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$
and your equation $(1)$ with generally different points for the real and imaginary part.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f633974%2fanalogue-of-the-mean-value-theorem-for-holomorphic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then
$$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$
but $f'(c) neq 0$ for all $cinmathbb{C}$.
What you have in terms of the mean value theorem for holomorphic functions is the estimate
$$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$
and your equation $(1)$ with generally different points for the real and imaginary part.
$endgroup$
add a comment |
$begingroup$
No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then
$$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$
but $f'(c) neq 0$ for all $cinmathbb{C}$.
What you have in terms of the mean value theorem for holomorphic functions is the estimate
$$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$
and your equation $(1)$ with generally different points for the real and imaginary part.
$endgroup$
add a comment |
$begingroup$
No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then
$$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$
but $f'(c) neq 0$ for all $cinmathbb{C}$.
What you have in terms of the mean value theorem for holomorphic functions is the estimate
$$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$
and your equation $(1)$ with generally different points for the real and imaginary part.
$endgroup$
No, in general such a $c$ does not exist. The classical counterexample is $f(z) = e^z$, with $w_2 = w_1 + 2pi i$. Then
$$frac{f(w_2) - f(w_1)}{w_2-w_1} = 0,$$
but $f'(c) neq 0$ for all $cinmathbb{C}$.
What you have in terms of the mean value theorem for holomorphic functions is the estimate
$$lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvertcdot max leftlbrace lvert f'(zeta)rvert : zeta in [w_1,w_2]rightrbrace,$$
and your equation $(1)$ with generally different points for the real and imaginary part.
edited Jan 10 '14 at 21:36
community wiki
2 revs, 2 users 85%
Daniel Fischer
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f633974%2fanalogue-of-the-mean-value-theorem-for-holomorphic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
No, $f(z) = e^z$, $w_2 = w_1 + 2pi i$ is the classical counterexample. You have the estimate, $lvert f(w_2) - f(w_1)rvert leqslant lvert w_2-w_1rvert cdot max { lvert f'(z)rvert : z in [w_1,w_2]}$, and the two point-form for real and imaginary part. That's it.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:38
$begingroup$
@DanielFischer I don't understand the part : "and the two point-form ..."
$endgroup$
– Amr
Jan 10 '14 at 18:43
$begingroup$
Your equation $(1)$ in the Note:.
$endgroup$
– Daniel Fischer♦
Jan 10 '14 at 18:44
$begingroup$
@DanielFischer Ahhhhh :) Thanks a lot.
$endgroup$
– Amr
Jan 10 '14 at 18:49