Find the value of $3tan^{-1}frac{1}{2}+2tan^{-1}frac{1}{5}+sin^{-1}frac{142}{65sqrt{5}}$
$begingroup$
Find the value of $3tan^{-1}left(dfrac{1}{2}right)+2tan^{-1}left(dfrac{1}{5}right)+sin^{-1}left(dfrac{142}{65sqrt{5}}right)$
My reference gives the solution $0$ to this problem.
My Attempt
$$
|x_1|=frac{1}{2}leqfrac{1}{sqrt{3}}implies
3tan^{-1}frac{1}{2}=tan^{-1}frac{frac{3}{2}-frac{1}{8}}{1-frac{3}{4}}=tan^{-1}frac{11}{2}\
|x_2|=frac{1}{5}<1implies2tan^{-1}dfrac{1}{5}=tan^{-1}frac{frac{2}{5}}{1-frac{1}{25}}=tan^{-1}frac{10}{24}=tan^{-1}frac{5}{12}\
XY=frac{11}{2}frac{5}{12}=frac{55}{24}>1quad&quad X,Y>0\
3tan^{-1}dfrac{1}{2}+2tan^{-1}dfrac{1}{5}=tan^{-1}frac{11}{2}+tan^{-1}frac{5}{12}=pi+tan^{-1}frac{frac{11}{2}+frac{5}{12}}{1-frac{11}{2}frac{5}{12}}\
=pi-tan^{-1}frac{142}{31}
$$
So I seem to get $pi$ as the answer, what is going wrong here ?
trigonometry inverse-function
$endgroup$
add a comment |
$begingroup$
Find the value of $3tan^{-1}left(dfrac{1}{2}right)+2tan^{-1}left(dfrac{1}{5}right)+sin^{-1}left(dfrac{142}{65sqrt{5}}right)$
My reference gives the solution $0$ to this problem.
My Attempt
$$
|x_1|=frac{1}{2}leqfrac{1}{sqrt{3}}implies
3tan^{-1}frac{1}{2}=tan^{-1}frac{frac{3}{2}-frac{1}{8}}{1-frac{3}{4}}=tan^{-1}frac{11}{2}\
|x_2|=frac{1}{5}<1implies2tan^{-1}dfrac{1}{5}=tan^{-1}frac{frac{2}{5}}{1-frac{1}{25}}=tan^{-1}frac{10}{24}=tan^{-1}frac{5}{12}\
XY=frac{11}{2}frac{5}{12}=frac{55}{24}>1quad&quad X,Y>0\
3tan^{-1}dfrac{1}{2}+2tan^{-1}dfrac{1}{5}=tan^{-1}frac{11}{2}+tan^{-1}frac{5}{12}=pi+tan^{-1}frac{frac{11}{2}+frac{5}{12}}{1-frac{11}{2}frac{5}{12}}\
=pi-tan^{-1}frac{142}{31}
$$
So I seem to get $pi$ as the answer, what is going wrong here ?
trigonometry inverse-function
$endgroup$
2
$begingroup$
That definitely looks positive to me!
$endgroup$
– Lord Shark the Unknown
Dec 11 '18 at 19:03
$begingroup$
Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
$endgroup$
– achille hui
Dec 11 '18 at 19:10
add a comment |
$begingroup$
Find the value of $3tan^{-1}left(dfrac{1}{2}right)+2tan^{-1}left(dfrac{1}{5}right)+sin^{-1}left(dfrac{142}{65sqrt{5}}right)$
My reference gives the solution $0$ to this problem.
My Attempt
$$
|x_1|=frac{1}{2}leqfrac{1}{sqrt{3}}implies
3tan^{-1}frac{1}{2}=tan^{-1}frac{frac{3}{2}-frac{1}{8}}{1-frac{3}{4}}=tan^{-1}frac{11}{2}\
|x_2|=frac{1}{5}<1implies2tan^{-1}dfrac{1}{5}=tan^{-1}frac{frac{2}{5}}{1-frac{1}{25}}=tan^{-1}frac{10}{24}=tan^{-1}frac{5}{12}\
XY=frac{11}{2}frac{5}{12}=frac{55}{24}>1quad&quad X,Y>0\
3tan^{-1}dfrac{1}{2}+2tan^{-1}dfrac{1}{5}=tan^{-1}frac{11}{2}+tan^{-1}frac{5}{12}=pi+tan^{-1}frac{frac{11}{2}+frac{5}{12}}{1-frac{11}{2}frac{5}{12}}\
=pi-tan^{-1}frac{142}{31}
$$
So I seem to get $pi$ as the answer, what is going wrong here ?
trigonometry inverse-function
$endgroup$
Find the value of $3tan^{-1}left(dfrac{1}{2}right)+2tan^{-1}left(dfrac{1}{5}right)+sin^{-1}left(dfrac{142}{65sqrt{5}}right)$
My reference gives the solution $0$ to this problem.
My Attempt
$$
|x_1|=frac{1}{2}leqfrac{1}{sqrt{3}}implies
3tan^{-1}frac{1}{2}=tan^{-1}frac{frac{3}{2}-frac{1}{8}}{1-frac{3}{4}}=tan^{-1}frac{11}{2}\
|x_2|=frac{1}{5}<1implies2tan^{-1}dfrac{1}{5}=tan^{-1}frac{frac{2}{5}}{1-frac{1}{25}}=tan^{-1}frac{10}{24}=tan^{-1}frac{5}{12}\
XY=frac{11}{2}frac{5}{12}=frac{55}{24}>1quad&quad X,Y>0\
3tan^{-1}dfrac{1}{2}+2tan^{-1}dfrac{1}{5}=tan^{-1}frac{11}{2}+tan^{-1}frac{5}{12}=pi+tan^{-1}frac{frac{11}{2}+frac{5}{12}}{1-frac{11}{2}frac{5}{12}}\
=pi-tan^{-1}frac{142}{31}
$$
So I seem to get $pi$ as the answer, what is going wrong here ?
trigonometry inverse-function
trigonometry inverse-function
edited Dec 11 '18 at 19:36
Lorenzo B.
1,8602520
1,8602520
asked Dec 11 '18 at 18:53
ss1729ss1729
1,9721923
1,9721923
2
$begingroup$
That definitely looks positive to me!
$endgroup$
– Lord Shark the Unknown
Dec 11 '18 at 19:03
$begingroup$
Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
$endgroup$
– achille hui
Dec 11 '18 at 19:10
add a comment |
2
$begingroup$
That definitely looks positive to me!
$endgroup$
– Lord Shark the Unknown
Dec 11 '18 at 19:03
$begingroup$
Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
$endgroup$
– achille hui
Dec 11 '18 at 19:10
2
2
$begingroup$
That definitely looks positive to me!
$endgroup$
– Lord Shark the Unknown
Dec 11 '18 at 19:03
$begingroup$
That definitely looks positive to me!
$endgroup$
– Lord Shark the Unknown
Dec 11 '18 at 19:03
$begingroup$
Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
$endgroup$
– achille hui
Dec 11 '18 at 19:10
$begingroup$
Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
$endgroup$
– achille hui
Dec 11 '18 at 19:10
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035654%2ffind-the-value-of-3-tan-1-frac122-tan-1-frac15-sin-1-frac14%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.
$endgroup$
add a comment |
$begingroup$
Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.
$endgroup$
add a comment |
$begingroup$
Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.
$endgroup$
Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.
answered Dec 11 '18 at 19:17
OldboyOldboy
8,4521936
8,4521936
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035654%2ffind-the-value-of-3-tan-1-frac122-tan-1-frac15-sin-1-frac14%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
That definitely looks positive to me!
$endgroup$
– Lord Shark the Unknown
Dec 11 '18 at 19:03
$begingroup$
Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
$endgroup$
– achille hui
Dec 11 '18 at 19:10