Find the value of $3tan^{-1}frac{1}{2}+2tan^{-1}frac{1}{5}+sin^{-1}frac{142}{65sqrt{5}}$












0












$begingroup$



Find the value of $3tan^{-1}left(dfrac{1}{2}right)+2tan^{-1}left(dfrac{1}{5}right)+sin^{-1}left(dfrac{142}{65sqrt{5}}right)$




My reference gives the solution $0$ to this problem.



My Attempt



$$
|x_1|=frac{1}{2}leqfrac{1}{sqrt{3}}implies
3tan^{-1}frac{1}{2}=tan^{-1}frac{frac{3}{2}-frac{1}{8}}{1-frac{3}{4}}=tan^{-1}frac{11}{2}\
|x_2|=frac{1}{5}<1implies2tan^{-1}dfrac{1}{5}=tan^{-1}frac{frac{2}{5}}{1-frac{1}{25}}=tan^{-1}frac{10}{24}=tan^{-1}frac{5}{12}\
XY=frac{11}{2}frac{5}{12}=frac{55}{24}>1quad&quad X,Y>0\
3tan^{-1}dfrac{1}{2}+2tan^{-1}dfrac{1}{5}=tan^{-1}frac{11}{2}+tan^{-1}frac{5}{12}=pi+tan^{-1}frac{frac{11}{2}+frac{5}{12}}{1-frac{11}{2}frac{5}{12}}\
=pi-tan^{-1}frac{142}{31}
$$

So I seem to get $pi$ as the answer, what is going wrong here ?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    That definitely looks positive to me!
    $endgroup$
    – Lord Shark the Unknown
    Dec 11 '18 at 19:03










  • $begingroup$
    Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
    $endgroup$
    – achille hui
    Dec 11 '18 at 19:10
















0












$begingroup$



Find the value of $3tan^{-1}left(dfrac{1}{2}right)+2tan^{-1}left(dfrac{1}{5}right)+sin^{-1}left(dfrac{142}{65sqrt{5}}right)$




My reference gives the solution $0$ to this problem.



My Attempt



$$
|x_1|=frac{1}{2}leqfrac{1}{sqrt{3}}implies
3tan^{-1}frac{1}{2}=tan^{-1}frac{frac{3}{2}-frac{1}{8}}{1-frac{3}{4}}=tan^{-1}frac{11}{2}\
|x_2|=frac{1}{5}<1implies2tan^{-1}dfrac{1}{5}=tan^{-1}frac{frac{2}{5}}{1-frac{1}{25}}=tan^{-1}frac{10}{24}=tan^{-1}frac{5}{12}\
XY=frac{11}{2}frac{5}{12}=frac{55}{24}>1quad&quad X,Y>0\
3tan^{-1}dfrac{1}{2}+2tan^{-1}dfrac{1}{5}=tan^{-1}frac{11}{2}+tan^{-1}frac{5}{12}=pi+tan^{-1}frac{frac{11}{2}+frac{5}{12}}{1-frac{11}{2}frac{5}{12}}\
=pi-tan^{-1}frac{142}{31}
$$

So I seem to get $pi$ as the answer, what is going wrong here ?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    That definitely looks positive to me!
    $endgroup$
    – Lord Shark the Unknown
    Dec 11 '18 at 19:03










  • $begingroup$
    Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
    $endgroup$
    – achille hui
    Dec 11 '18 at 19:10














0












0








0





$begingroup$



Find the value of $3tan^{-1}left(dfrac{1}{2}right)+2tan^{-1}left(dfrac{1}{5}right)+sin^{-1}left(dfrac{142}{65sqrt{5}}right)$




My reference gives the solution $0$ to this problem.



My Attempt



$$
|x_1|=frac{1}{2}leqfrac{1}{sqrt{3}}implies
3tan^{-1}frac{1}{2}=tan^{-1}frac{frac{3}{2}-frac{1}{8}}{1-frac{3}{4}}=tan^{-1}frac{11}{2}\
|x_2|=frac{1}{5}<1implies2tan^{-1}dfrac{1}{5}=tan^{-1}frac{frac{2}{5}}{1-frac{1}{25}}=tan^{-1}frac{10}{24}=tan^{-1}frac{5}{12}\
XY=frac{11}{2}frac{5}{12}=frac{55}{24}>1quad&quad X,Y>0\
3tan^{-1}dfrac{1}{2}+2tan^{-1}dfrac{1}{5}=tan^{-1}frac{11}{2}+tan^{-1}frac{5}{12}=pi+tan^{-1}frac{frac{11}{2}+frac{5}{12}}{1-frac{11}{2}frac{5}{12}}\
=pi-tan^{-1}frac{142}{31}
$$

So I seem to get $pi$ as the answer, what is going wrong here ?










share|cite|improve this question











$endgroup$





Find the value of $3tan^{-1}left(dfrac{1}{2}right)+2tan^{-1}left(dfrac{1}{5}right)+sin^{-1}left(dfrac{142}{65sqrt{5}}right)$




My reference gives the solution $0$ to this problem.



My Attempt



$$
|x_1|=frac{1}{2}leqfrac{1}{sqrt{3}}implies
3tan^{-1}frac{1}{2}=tan^{-1}frac{frac{3}{2}-frac{1}{8}}{1-frac{3}{4}}=tan^{-1}frac{11}{2}\
|x_2|=frac{1}{5}<1implies2tan^{-1}dfrac{1}{5}=tan^{-1}frac{frac{2}{5}}{1-frac{1}{25}}=tan^{-1}frac{10}{24}=tan^{-1}frac{5}{12}\
XY=frac{11}{2}frac{5}{12}=frac{55}{24}>1quad&quad X,Y>0\
3tan^{-1}dfrac{1}{2}+2tan^{-1}dfrac{1}{5}=tan^{-1}frac{11}{2}+tan^{-1}frac{5}{12}=pi+tan^{-1}frac{frac{11}{2}+frac{5}{12}}{1-frac{11}{2}frac{5}{12}}\
=pi-tan^{-1}frac{142}{31}
$$

So I seem to get $pi$ as the answer, what is going wrong here ?







trigonometry inverse-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 11 '18 at 19:36









Lorenzo B.

1,8602520




1,8602520










asked Dec 11 '18 at 18:53









ss1729ss1729

1,9721923




1,9721923








  • 2




    $begingroup$
    That definitely looks positive to me!
    $endgroup$
    – Lord Shark the Unknown
    Dec 11 '18 at 19:03










  • $begingroup$
    Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
    $endgroup$
    – achille hui
    Dec 11 '18 at 19:10














  • 2




    $begingroup$
    That definitely looks positive to me!
    $endgroup$
    – Lord Shark the Unknown
    Dec 11 '18 at 19:03










  • $begingroup$
    Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
    $endgroup$
    – achille hui
    Dec 11 '18 at 19:10








2




2




$begingroup$
That definitely looks positive to me!
$endgroup$
– Lord Shark the Unknown
Dec 11 '18 at 19:03




$begingroup$
That definitely looks positive to me!
$endgroup$
– Lord Shark the Unknown
Dec 11 '18 at 19:03












$begingroup$
Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
$endgroup$
– achille hui
Dec 11 '18 at 19:10




$begingroup$
Your reference is wrong.You should compute the value numerically. This cannot prove your answer is right but it can show your reference is wrong.
$endgroup$
– achille hui
Dec 11 '18 at 19:10










1 Answer
1






active

oldest

votes


















0












$begingroup$

Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035654%2ffind-the-value-of-3-tan-1-frac122-tan-1-frac15-sin-1-frac14%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.






        share|cite|improve this answer









        $endgroup$



        Your reference is clearly wrong without calculating anything. Functions like $tan^{-1}$ and $sin^{-1}$ generate positive values for positive arguments, by convention. All your arguments are positive so the result must be positive too. Numeric check proves that your result is correct.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 11 '18 at 19:17









        OldboyOldboy

        8,4521936




        8,4521936






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035654%2ffind-the-value-of-3-tan-1-frac122-tan-1-frac15-sin-1-frac14%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten