Identity with regards to error of sinc approximation
$begingroup$
I have this issue that I'm kind of clueless about, it is peripheral to what I typically do. I will state all the assumptions meticulously, even though I suspect they are not all needed. It is problem 3.1.1 in Stengers 1993 "Numerical Methods Based on Sinc and Analytic Functions".
Let $d>0$ and define $$D_d= {win mathbb{C} : lvert Im w rvert < d}$$ and for $0<epsilon<1$ $$D_d(varepsilon)= {win mathbb{C} : lvert Re w rvert < varepsilon lvert, ; lvert Im w rvert < d (1-varepsilon) }$$
Let $1leq p <infty$ and define
$$N_p(f,D_d) = left ( lim_{varepsilonto 0} int_{partial D_d(varepsilon)} lvert f(z) rvert^p lvert dz rvert right ) ^{1/p}$$
Define $H^p(D_d)$ the family of functions that are analytic and has $N_p(f,D_d)<infty $.
Let $0<delta < d$ and $h>0$. Define
$$D_d(n,delta)= left{win mathbb{C} : lvert Re w rvert < left(n+frac12right) h , ; lvert Im w rvert < delta right}$$
Let
$$
E(n,delta,f)(z) = frac{sin(pi z / h)}{2 pi i} int_{partial D(n,delta)} frac{f(zeta)}{(zeta-z) sin ( pi zeta /h)} d zeta.
$$
I would like to show that
$$
E(n,delta,f)(zeta) = f(zeta)- sin(pi zeta/h) sum_{k=-n}^n frac{(-1)^k f(kh)}{pi( zeta-kh)/h}
$$
complex-analysis complex-integration
$endgroup$
add a comment |
$begingroup$
I have this issue that I'm kind of clueless about, it is peripheral to what I typically do. I will state all the assumptions meticulously, even though I suspect they are not all needed. It is problem 3.1.1 in Stengers 1993 "Numerical Methods Based on Sinc and Analytic Functions".
Let $d>0$ and define $$D_d= {win mathbb{C} : lvert Im w rvert < d}$$ and for $0<epsilon<1$ $$D_d(varepsilon)= {win mathbb{C} : lvert Re w rvert < varepsilon lvert, ; lvert Im w rvert < d (1-varepsilon) }$$
Let $1leq p <infty$ and define
$$N_p(f,D_d) = left ( lim_{varepsilonto 0} int_{partial D_d(varepsilon)} lvert f(z) rvert^p lvert dz rvert right ) ^{1/p}$$
Define $H^p(D_d)$ the family of functions that are analytic and has $N_p(f,D_d)<infty $.
Let $0<delta < d$ and $h>0$. Define
$$D_d(n,delta)= left{win mathbb{C} : lvert Re w rvert < left(n+frac12right) h , ; lvert Im w rvert < delta right}$$
Let
$$
E(n,delta,f)(z) = frac{sin(pi z / h)}{2 pi i} int_{partial D(n,delta)} frac{f(zeta)}{(zeta-z) sin ( pi zeta /h)} d zeta.
$$
I would like to show that
$$
E(n,delta,f)(zeta) = f(zeta)- sin(pi zeta/h) sum_{k=-n}^n frac{(-1)^k f(kh)}{pi( zeta-kh)/h}
$$
complex-analysis complex-integration
$endgroup$
add a comment |
$begingroup$
I have this issue that I'm kind of clueless about, it is peripheral to what I typically do. I will state all the assumptions meticulously, even though I suspect they are not all needed. It is problem 3.1.1 in Stengers 1993 "Numerical Methods Based on Sinc and Analytic Functions".
Let $d>0$ and define $$D_d= {win mathbb{C} : lvert Im w rvert < d}$$ and for $0<epsilon<1$ $$D_d(varepsilon)= {win mathbb{C} : lvert Re w rvert < varepsilon lvert, ; lvert Im w rvert < d (1-varepsilon) }$$
Let $1leq p <infty$ and define
$$N_p(f,D_d) = left ( lim_{varepsilonto 0} int_{partial D_d(varepsilon)} lvert f(z) rvert^p lvert dz rvert right ) ^{1/p}$$
Define $H^p(D_d)$ the family of functions that are analytic and has $N_p(f,D_d)<infty $.
Let $0<delta < d$ and $h>0$. Define
$$D_d(n,delta)= left{win mathbb{C} : lvert Re w rvert < left(n+frac12right) h , ; lvert Im w rvert < delta right}$$
Let
$$
E(n,delta,f)(z) = frac{sin(pi z / h)}{2 pi i} int_{partial D(n,delta)} frac{f(zeta)}{(zeta-z) sin ( pi zeta /h)} d zeta.
$$
I would like to show that
$$
E(n,delta,f)(zeta) = f(zeta)- sin(pi zeta/h) sum_{k=-n}^n frac{(-1)^k f(kh)}{pi( zeta-kh)/h}
$$
complex-analysis complex-integration
$endgroup$
I have this issue that I'm kind of clueless about, it is peripheral to what I typically do. I will state all the assumptions meticulously, even though I suspect they are not all needed. It is problem 3.1.1 in Stengers 1993 "Numerical Methods Based on Sinc and Analytic Functions".
Let $d>0$ and define $$D_d= {win mathbb{C} : lvert Im w rvert < d}$$ and for $0<epsilon<1$ $$D_d(varepsilon)= {win mathbb{C} : lvert Re w rvert < varepsilon lvert, ; lvert Im w rvert < d (1-varepsilon) }$$
Let $1leq p <infty$ and define
$$N_p(f,D_d) = left ( lim_{varepsilonto 0} int_{partial D_d(varepsilon)} lvert f(z) rvert^p lvert dz rvert right ) ^{1/p}$$
Define $H^p(D_d)$ the family of functions that are analytic and has $N_p(f,D_d)<infty $.
Let $0<delta < d$ and $h>0$. Define
$$D_d(n,delta)= left{win mathbb{C} : lvert Re w rvert < left(n+frac12right) h , ; lvert Im w rvert < delta right}$$
Let
$$
E(n,delta,f)(z) = frac{sin(pi z / h)}{2 pi i} int_{partial D(n,delta)} frac{f(zeta)}{(zeta-z) sin ( pi zeta /h)} d zeta.
$$
I would like to show that
$$
E(n,delta,f)(zeta) = f(zeta)- sin(pi zeta/h) sum_{k=-n}^n frac{(-1)^k f(kh)}{pi( zeta-kh)/h}
$$
complex-analysis complex-integration
complex-analysis complex-integration
edited Dec 15 '18 at 4:01
Yuri Negometyanov
11.8k1729
11.8k1729
asked Dec 11 '18 at 21:50
HenrikHenrik
87411227
87411227
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have
$$
frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
$$
The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).
So by the homology form of Cauchy's theorem we just need to prove
$$
frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
$$
where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
$$
sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
$$
So
begin{align*}
&frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
&=frac1{2pi i}
int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
&=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
end{align*}
and the result follows.
Addendum
The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
begin{align*}
sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
&=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
&=(-1)^kfrac{pi(z-kh)}{h}times\
&quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
end{align*}
so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
begin{align*}
E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
&to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
&= 0,
end{align*}
which is morally how we should make sense of the formula.
$endgroup$
$begingroup$
I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
$endgroup$
– Henrik
Dec 18 '18 at 21:23
1
$begingroup$
I've added that in the answer. Is there any more you want me to clarify?
$endgroup$
– user10354138
Dec 19 '18 at 12:25
$begingroup$
Nope! Thank you very much!
$endgroup$
– Henrik
Dec 19 '18 at 18:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035878%2fidentity-with-regards-to-error-of-sinc-approximation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have
$$
frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
$$
The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).
So by the homology form of Cauchy's theorem we just need to prove
$$
frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
$$
where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
$$
sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
$$
So
begin{align*}
&frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
&=frac1{2pi i}
int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
&=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
end{align*}
and the result follows.
Addendum
The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
begin{align*}
sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
&=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
&=(-1)^kfrac{pi(z-kh)}{h}times\
&quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
end{align*}
so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
begin{align*}
E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
&to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
&= 0,
end{align*}
which is morally how we should make sense of the formula.
$endgroup$
$begingroup$
I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
$endgroup$
– Henrik
Dec 18 '18 at 21:23
1
$begingroup$
I've added that in the answer. Is there any more you want me to clarify?
$endgroup$
– user10354138
Dec 19 '18 at 12:25
$begingroup$
Nope! Thank you very much!
$endgroup$
– Henrik
Dec 19 '18 at 18:10
add a comment |
$begingroup$
We have
$$
frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
$$
The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).
So by the homology form of Cauchy's theorem we just need to prove
$$
frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
$$
where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
$$
sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
$$
So
begin{align*}
&frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
&=frac1{2pi i}
int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
&=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
end{align*}
and the result follows.
Addendum
The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
begin{align*}
sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
&=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
&=(-1)^kfrac{pi(z-kh)}{h}times\
&quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
end{align*}
so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
begin{align*}
E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
&to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
&= 0,
end{align*}
which is morally how we should make sense of the formula.
$endgroup$
$begingroup$
I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
$endgroup$
– Henrik
Dec 18 '18 at 21:23
1
$begingroup$
I've added that in the answer. Is there any more you want me to clarify?
$endgroup$
– user10354138
Dec 19 '18 at 12:25
$begingroup$
Nope! Thank you very much!
$endgroup$
– Henrik
Dec 19 '18 at 18:10
add a comment |
$begingroup$
We have
$$
frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
$$
The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).
So by the homology form of Cauchy's theorem we just need to prove
$$
frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
$$
where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
$$
sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
$$
So
begin{align*}
&frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
&=frac1{2pi i}
int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
&=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
end{align*}
and the result follows.
Addendum
The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
begin{align*}
sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
&=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
&=(-1)^kfrac{pi(z-kh)}{h}times\
&quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
end{align*}
so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
begin{align*}
E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
&to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
&= 0,
end{align*}
which is morally how we should make sense of the formula.
$endgroup$
We have
$$
frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
$$
The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).
So by the homology form of Cauchy's theorem we just need to prove
$$
frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
$$
where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
$$
sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
$$
So
begin{align*}
&frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
&=frac1{2pi i}
int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
&=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
end{align*}
and the result follows.
Addendum
The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
begin{align*}
sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
&=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
&=(-1)^kfrac{pi(z-kh)}{h}times\
&quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
end{align*}
so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
begin{align*}
E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
&to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
&= 0,
end{align*}
which is morally how we should make sense of the formula.
edited Dec 19 '18 at 20:09
answered Dec 18 '18 at 8:27
user10354138user10354138
7,4322925
7,4322925
$begingroup$
I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
$endgroup$
– Henrik
Dec 18 '18 at 21:23
1
$begingroup$
I've added that in the answer. Is there any more you want me to clarify?
$endgroup$
– user10354138
Dec 19 '18 at 12:25
$begingroup$
Nope! Thank you very much!
$endgroup$
– Henrik
Dec 19 '18 at 18:10
add a comment |
$begingroup$
I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
$endgroup$
– Henrik
Dec 18 '18 at 21:23
1
$begingroup$
I've added that in the answer. Is there any more you want me to clarify?
$endgroup$
– user10354138
Dec 19 '18 at 12:25
$begingroup$
Nope! Thank you very much!
$endgroup$
– Henrik
Dec 19 '18 at 18:10
$begingroup$
I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
$endgroup$
– Henrik
Dec 18 '18 at 21:23
$begingroup$
I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
$endgroup$
– Henrik
Dec 18 '18 at 21:23
1
1
$begingroup$
I've added that in the answer. Is there any more you want me to clarify?
$endgroup$
– user10354138
Dec 19 '18 at 12:25
$begingroup$
I've added that in the answer. Is there any more you want me to clarify?
$endgroup$
– user10354138
Dec 19 '18 at 12:25
$begingroup$
Nope! Thank you very much!
$endgroup$
– Henrik
Dec 19 '18 at 18:10
$begingroup$
Nope! Thank you very much!
$endgroup$
– Henrik
Dec 19 '18 at 18:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035878%2fidentity-with-regards-to-error-of-sinc-approximation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown