Identity with regards to error of sinc approximation












-1












$begingroup$


I have this issue that I'm kind of clueless about, it is peripheral to what I typically do. I will state all the assumptions meticulously, even though I suspect they are not all needed. It is problem 3.1.1 in Stengers 1993 "Numerical Methods Based on Sinc and Analytic Functions".



Let $d>0$ and define $$D_d= {win mathbb{C} : lvert Im w rvert < d}$$ and for $0<epsilon<1$ $$D_d(varepsilon)= {win mathbb{C} : lvert Re w rvert < varepsilon lvert, ; lvert Im w rvert < d (1-varepsilon) }$$
Let $1leq p <infty$ and define
$$N_p(f,D_d) = left ( lim_{varepsilonto 0} int_{partial D_d(varepsilon)} lvert f(z) rvert^p lvert dz rvert right ) ^{1/p}$$



Define $H^p(D_d)$ the family of functions that are analytic and has $N_p(f,D_d)<infty $.



Let $0<delta < d$ and $h>0$. Define
$$D_d(n,delta)= left{win mathbb{C} : lvert Re w rvert < left(n+frac12right) h , ; lvert Im w rvert < delta right}$$



Let
$$
E(n,delta,f)(z) = frac{sin(pi z / h)}{2 pi i} int_{partial D(n,delta)} frac{f(zeta)}{(zeta-z) sin ( pi zeta /h)} d zeta.
$$



I would like to show that
$$
E(n,delta,f)(zeta) = f(zeta)- sin(pi zeta/h) sum_{k=-n}^n frac{(-1)^k f(kh)}{pi( zeta-kh)/h}
$$










share|cite|improve this question











$endgroup$

















    -1












    $begingroup$


    I have this issue that I'm kind of clueless about, it is peripheral to what I typically do. I will state all the assumptions meticulously, even though I suspect they are not all needed. It is problem 3.1.1 in Stengers 1993 "Numerical Methods Based on Sinc and Analytic Functions".



    Let $d>0$ and define $$D_d= {win mathbb{C} : lvert Im w rvert < d}$$ and for $0<epsilon<1$ $$D_d(varepsilon)= {win mathbb{C} : lvert Re w rvert < varepsilon lvert, ; lvert Im w rvert < d (1-varepsilon) }$$
    Let $1leq p <infty$ and define
    $$N_p(f,D_d) = left ( lim_{varepsilonto 0} int_{partial D_d(varepsilon)} lvert f(z) rvert^p lvert dz rvert right ) ^{1/p}$$



    Define $H^p(D_d)$ the family of functions that are analytic and has $N_p(f,D_d)<infty $.



    Let $0<delta < d$ and $h>0$. Define
    $$D_d(n,delta)= left{win mathbb{C} : lvert Re w rvert < left(n+frac12right) h , ; lvert Im w rvert < delta right}$$



    Let
    $$
    E(n,delta,f)(z) = frac{sin(pi z / h)}{2 pi i} int_{partial D(n,delta)} frac{f(zeta)}{(zeta-z) sin ( pi zeta /h)} d zeta.
    $$



    I would like to show that
    $$
    E(n,delta,f)(zeta) = f(zeta)- sin(pi zeta/h) sum_{k=-n}^n frac{(-1)^k f(kh)}{pi( zeta-kh)/h}
    $$










    share|cite|improve this question











    $endgroup$















      -1












      -1








      -1





      $begingroup$


      I have this issue that I'm kind of clueless about, it is peripheral to what I typically do. I will state all the assumptions meticulously, even though I suspect they are not all needed. It is problem 3.1.1 in Stengers 1993 "Numerical Methods Based on Sinc and Analytic Functions".



      Let $d>0$ and define $$D_d= {win mathbb{C} : lvert Im w rvert < d}$$ and for $0<epsilon<1$ $$D_d(varepsilon)= {win mathbb{C} : lvert Re w rvert < varepsilon lvert, ; lvert Im w rvert < d (1-varepsilon) }$$
      Let $1leq p <infty$ and define
      $$N_p(f,D_d) = left ( lim_{varepsilonto 0} int_{partial D_d(varepsilon)} lvert f(z) rvert^p lvert dz rvert right ) ^{1/p}$$



      Define $H^p(D_d)$ the family of functions that are analytic and has $N_p(f,D_d)<infty $.



      Let $0<delta < d$ and $h>0$. Define
      $$D_d(n,delta)= left{win mathbb{C} : lvert Re w rvert < left(n+frac12right) h , ; lvert Im w rvert < delta right}$$



      Let
      $$
      E(n,delta,f)(z) = frac{sin(pi z / h)}{2 pi i} int_{partial D(n,delta)} frac{f(zeta)}{(zeta-z) sin ( pi zeta /h)} d zeta.
      $$



      I would like to show that
      $$
      E(n,delta,f)(zeta) = f(zeta)- sin(pi zeta/h) sum_{k=-n}^n frac{(-1)^k f(kh)}{pi( zeta-kh)/h}
      $$










      share|cite|improve this question











      $endgroup$




      I have this issue that I'm kind of clueless about, it is peripheral to what I typically do. I will state all the assumptions meticulously, even though I suspect they are not all needed. It is problem 3.1.1 in Stengers 1993 "Numerical Methods Based on Sinc and Analytic Functions".



      Let $d>0$ and define $$D_d= {win mathbb{C} : lvert Im w rvert < d}$$ and for $0<epsilon<1$ $$D_d(varepsilon)= {win mathbb{C} : lvert Re w rvert < varepsilon lvert, ; lvert Im w rvert < d (1-varepsilon) }$$
      Let $1leq p <infty$ and define
      $$N_p(f,D_d) = left ( lim_{varepsilonto 0} int_{partial D_d(varepsilon)} lvert f(z) rvert^p lvert dz rvert right ) ^{1/p}$$



      Define $H^p(D_d)$ the family of functions that are analytic and has $N_p(f,D_d)<infty $.



      Let $0<delta < d$ and $h>0$. Define
      $$D_d(n,delta)= left{win mathbb{C} : lvert Re w rvert < left(n+frac12right) h , ; lvert Im w rvert < delta right}$$



      Let
      $$
      E(n,delta,f)(z) = frac{sin(pi z / h)}{2 pi i} int_{partial D(n,delta)} frac{f(zeta)}{(zeta-z) sin ( pi zeta /h)} d zeta.
      $$



      I would like to show that
      $$
      E(n,delta,f)(zeta) = f(zeta)- sin(pi zeta/h) sum_{k=-n}^n frac{(-1)^k f(kh)}{pi( zeta-kh)/h}
      $$







      complex-analysis complex-integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 15 '18 at 4:01









      Yuri Negometyanov

      11.8k1729




      11.8k1729










      asked Dec 11 '18 at 21:50









      HenrikHenrik

      87411227




      87411227






















          1 Answer
          1






          active

          oldest

          votes


















          1





          +50







          $begingroup$

          We have
          $$
          frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
          $$

          The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).



          So by the homology form of Cauchy's theorem we just need to prove
          $$
          frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
          $$

          where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
          $$
          sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
          $$

          So
          begin{align*}
          &frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
          &=frac1{2pi i}
          int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
          &=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
          end{align*}

          and the result follows.





          Addendum




          • The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
            begin{align*}
            sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
            &=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
            &=(-1)^kfrac{pi(z-kh)}{h}times\
            &quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
            end{align*}

            so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.


          • When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
            begin{align*}
            E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
            &to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
            &= 0,
            end{align*}

            which is morally how we should make sense of the formula.







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
            $endgroup$
            – Henrik
            Dec 18 '18 at 21:23






          • 1




            $begingroup$
            I've added that in the answer. Is there any more you want me to clarify?
            $endgroup$
            – user10354138
            Dec 19 '18 at 12:25










          • $begingroup$
            Nope! Thank you very much!
            $endgroup$
            – Henrik
            Dec 19 '18 at 18:10











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035878%2fidentity-with-regards-to-error-of-sinc-approximation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1





          +50







          $begingroup$

          We have
          $$
          frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
          $$

          The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).



          So by the homology form of Cauchy's theorem we just need to prove
          $$
          frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
          $$

          where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
          $$
          sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
          $$

          So
          begin{align*}
          &frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
          &=frac1{2pi i}
          int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
          &=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
          end{align*}

          and the result follows.





          Addendum




          • The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
            begin{align*}
            sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
            &=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
            &=(-1)^kfrac{pi(z-kh)}{h}times\
            &quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
            end{align*}

            so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.


          • When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
            begin{align*}
            E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
            &to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
            &= 0,
            end{align*}

            which is morally how we should make sense of the formula.







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
            $endgroup$
            – Henrik
            Dec 18 '18 at 21:23






          • 1




            $begingroup$
            I've added that in the answer. Is there any more you want me to clarify?
            $endgroup$
            – user10354138
            Dec 19 '18 at 12:25










          • $begingroup$
            Nope! Thank you very much!
            $endgroup$
            – Henrik
            Dec 19 '18 at 18:10
















          1





          +50







          $begingroup$

          We have
          $$
          frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
          $$

          The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).



          So by the homology form of Cauchy's theorem we just need to prove
          $$
          frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
          $$

          where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
          $$
          sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
          $$

          So
          begin{align*}
          &frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
          &=frac1{2pi i}
          int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
          &=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
          end{align*}

          and the result follows.





          Addendum




          • The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
            begin{align*}
            sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
            &=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
            &=(-1)^kfrac{pi(z-kh)}{h}times\
            &quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
            end{align*}

            so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.


          • When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
            begin{align*}
            E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
            &to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
            &= 0,
            end{align*}

            which is morally how we should make sense of the formula.







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
            $endgroup$
            – Henrik
            Dec 18 '18 at 21:23






          • 1




            $begingroup$
            I've added that in the answer. Is there any more you want me to clarify?
            $endgroup$
            – user10354138
            Dec 19 '18 at 12:25










          • $begingroup$
            Nope! Thank you very much!
            $endgroup$
            – Henrik
            Dec 19 '18 at 18:10














          1





          +50







          1





          +50



          1




          +50



          $begingroup$

          We have
          $$
          frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
          $$

          The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).



          So by the homology form of Cauchy's theorem we just need to prove
          $$
          frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
          $$

          where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
          $$
          sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
          $$

          So
          begin{align*}
          &frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
          &=frac1{2pi i}
          int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
          &=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
          end{align*}

          and the result follows.





          Addendum




          • The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
            begin{align*}
            sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
            &=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
            &=(-1)^kfrac{pi(z-kh)}{h}times\
            &quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
            end{align*}

            so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.


          • When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
            begin{align*}
            E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
            &to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
            &= 0,
            end{align*}

            which is morally how we should make sense of the formula.







          share|cite|improve this answer











          $endgroup$



          We have
          $$
          frac{E(n,delta,f)(zeta)}{sin(pizeta/h)} = frac{1}{2 pi i} int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w.
          $$

          The RHS is almost the Cauchy integral formula for $dfrac{f(zeta)}{sin(pizeta/h)}$, except for the fact that $sin(pi w/h)$ has simple zeroes at $w=kh$, $k=-n,-n+1,dots,n-1,n$ lying inside $D(n,delta)$ contributing to the integral (and if $zeta$ happens to be one of these points you need to work a bit more for this double pole, for example, take limit over different $zeta$s).



          So by the homology form of Cauchy's theorem we just need to prove
          $$
          frac{1}{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w=frac{(-1)^k f(kh)}{pi( kh-zeta)/h}
          $$

          where $0<epsilon<h/2$ is chosen so that $zetanotinoverline{B_epsilon(kh)}$. But near $w=kh$, we have a holomorphic $g$ vanishing at $kh$ such that
          $$
          sin(pi w/h)=(-1)^kfrac{pi}{h}(w-kh)cdot(1+g(w)).
          $$

          So
          begin{align*}
          &frac1{2pi i}int_{partial B_epsilon(kh)} frac{f(w)}{(w-zeta) sin ( pi w /h)} ,mathrm{d}w\
          &=frac1{2pi i}
          int_{partial B_epsilon(kh)} frac{(-1)^k dfrac{f(w)}{(w-zeta)(1+g(w))pi/h}}{w-kh} ,mathrm{d}w\
          &=left.(-1)^k frac{f(w)}{(w-zeta)(1+g(w))pi/h}rightrvert_{w=kh}
          end{align*}

          and the result follows.





          Addendum




          • The function $g(z)$ is easily constructed from the Taylor series expansion of $sin(pi z/h)$ at $z=kh$
            begin{align*}
            sin(pi z/h)&=(-1)^ksin(pi(z-kh)/h)\
            &=(-1)^ksum_{j=0}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j+1}\
            &=(-1)^kfrac{pi(z-kh)}{h}times\
            &quadleft{1+sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}right}
            end{align*}

            so $g(z)=sum_{j=1}^inftyfrac{(-1)^j}{(2j+1)!}left[frac{pi(z-kh)}{h}right]^{2j}$.


          • When $zeta=ell h$, we can note that $$int_{partial D(n,delta)} frac{f(w)}{(w-zeta) sin ( pi w /h)},mathrm{d}w$$ is finite, multiplying by $sin(pizeta/h)/(2pi i)=sin(ellpi)/(2pi i)=0$ thus gives you $0$. This is also the limit as $zeta'tozeta$ of
            begin{align*}
            E(n,delta,f)(zeta')&=f(zeta')- sum_{k=-n}^n frac{(-1)^k f(kh)sin(pizeta'/h)}{pi( zeta'-kh)/h}\
            &to f(ell h)- sum_{k=-n}^n (-1)^k f(kh)color{red}{underbrace{lim_{zeta'toell h}frac{sin(pi zeta'/h)}{pi( zeta'-kh)/h}}_{begin{cases}(-1)^ell&text{ if }k=ell\0&text{otherwise}end{cases}}}\
            &= 0,
            end{align*}

            which is morally how we should make sense of the formula.








          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 19 '18 at 20:09

























          answered Dec 18 '18 at 8:27









          user10354138user10354138

          7,4322925




          7,4322925












          • $begingroup$
            I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
            $endgroup$
            – Henrik
            Dec 18 '18 at 21:23






          • 1




            $begingroup$
            I've added that in the answer. Is there any more you want me to clarify?
            $endgroup$
            – user10354138
            Dec 19 '18 at 12:25










          • $begingroup$
            Nope! Thank you very much!
            $endgroup$
            – Henrik
            Dec 19 '18 at 18:10


















          • $begingroup$
            I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
            $endgroup$
            – Henrik
            Dec 18 '18 at 21:23






          • 1




            $begingroup$
            I've added that in the answer. Is there any more you want me to clarify?
            $endgroup$
            – user10354138
            Dec 19 '18 at 12:25










          • $begingroup$
            Nope! Thank you very much!
            $endgroup$
            – Henrik
            Dec 19 '18 at 18:10
















          $begingroup$
          I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
          $endgroup$
          – Henrik
          Dec 18 '18 at 21:23




          $begingroup$
          I did not know any of the things you mentioned, but I was able with some googling to make your answer make sense. Would you mind elaborating on how $g$ is found? And/or how double poles are handled?
          $endgroup$
          – Henrik
          Dec 18 '18 at 21:23




          1




          1




          $begingroup$
          I've added that in the answer. Is there any more you want me to clarify?
          $endgroup$
          – user10354138
          Dec 19 '18 at 12:25




          $begingroup$
          I've added that in the answer. Is there any more you want me to clarify?
          $endgroup$
          – user10354138
          Dec 19 '18 at 12:25












          $begingroup$
          Nope! Thank you very much!
          $endgroup$
          – Henrik
          Dec 19 '18 at 18:10




          $begingroup$
          Nope! Thank you very much!
          $endgroup$
          – Henrik
          Dec 19 '18 at 18:10


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035878%2fidentity-with-regards-to-error-of-sinc-approximation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten