$L^p$ convergence of a sequence of functions
$begingroup$
I'd like a check for the following exercise I found online
Discuss the $L^{p}(0,1)$, $pin[1,+infty]$ convergence of the
sequence of functions $$ u_n(x)= left{ begin{array}{c} n^{4/3}x,
quad 0 < x <frac2n \ 0, quad frac2n leq x <1 \ end{array}
right. $$
Solution
The pointwise limit is $0$:
$lim_{n rightarrow +infty} u_{n}(x)=0$, where $u_n(x)= mathbb{1}_{(0,frac2n)}(x) n^{frac43} x$
In fact, $forall epsilon>0 exists n_0 text{ s.t } forall ngeq n_0:|frac2 n| < epsilon $
I'll study separately the cases for $p=+infty$, and $pgeq 1$.
- $p=+infty$
$lim_n sup_{x in (0,1)} |u_n(x)|=lim_n sup_{x in (0,frac2n)} n^{frac43}x=lim_n 2 n^{frac13} rightarrow +infty$ and thus there's no $L^{infty}$ convergence in $(0,1)$
- $p geq 1$
The integral to be computed is $int_0^1 |u_n(x)|^pdx=frac{2^{p+1}}{p+1} cdot n^{frac{p-3}{3} }$ and taking the limit for $n rightarrow +infty$ this is $0$ iff $frac{p-3}{3}<1$, thus we have $L^{p}(0,1)$ convergence for $p in [1,6)$
$square$
functional-analysis convergence
$endgroup$
add a comment |
$begingroup$
I'd like a check for the following exercise I found online
Discuss the $L^{p}(0,1)$, $pin[1,+infty]$ convergence of the
sequence of functions $$ u_n(x)= left{ begin{array}{c} n^{4/3}x,
quad 0 < x <frac2n \ 0, quad frac2n leq x <1 \ end{array}
right. $$
Solution
The pointwise limit is $0$:
$lim_{n rightarrow +infty} u_{n}(x)=0$, where $u_n(x)= mathbb{1}_{(0,frac2n)}(x) n^{frac43} x$
In fact, $forall epsilon>0 exists n_0 text{ s.t } forall ngeq n_0:|frac2 n| < epsilon $
I'll study separately the cases for $p=+infty$, and $pgeq 1$.
- $p=+infty$
$lim_n sup_{x in (0,1)} |u_n(x)|=lim_n sup_{x in (0,frac2n)} n^{frac43}x=lim_n 2 n^{frac13} rightarrow +infty$ and thus there's no $L^{infty}$ convergence in $(0,1)$
- $p geq 1$
The integral to be computed is $int_0^1 |u_n(x)|^pdx=frac{2^{p+1}}{p+1} cdot n^{frac{p-3}{3} }$ and taking the limit for $n rightarrow +infty$ this is $0$ iff $frac{p-3}{3}<1$, thus we have $L^{p}(0,1)$ convergence for $p in [1,6)$
$square$
functional-analysis convergence
$endgroup$
add a comment |
$begingroup$
I'd like a check for the following exercise I found online
Discuss the $L^{p}(0,1)$, $pin[1,+infty]$ convergence of the
sequence of functions $$ u_n(x)= left{ begin{array}{c} n^{4/3}x,
quad 0 < x <frac2n \ 0, quad frac2n leq x <1 \ end{array}
right. $$
Solution
The pointwise limit is $0$:
$lim_{n rightarrow +infty} u_{n}(x)=0$, where $u_n(x)= mathbb{1}_{(0,frac2n)}(x) n^{frac43} x$
In fact, $forall epsilon>0 exists n_0 text{ s.t } forall ngeq n_0:|frac2 n| < epsilon $
I'll study separately the cases for $p=+infty$, and $pgeq 1$.
- $p=+infty$
$lim_n sup_{x in (0,1)} |u_n(x)|=lim_n sup_{x in (0,frac2n)} n^{frac43}x=lim_n 2 n^{frac13} rightarrow +infty$ and thus there's no $L^{infty}$ convergence in $(0,1)$
- $p geq 1$
The integral to be computed is $int_0^1 |u_n(x)|^pdx=frac{2^{p+1}}{p+1} cdot n^{frac{p-3}{3} }$ and taking the limit for $n rightarrow +infty$ this is $0$ iff $frac{p-3}{3}<1$, thus we have $L^{p}(0,1)$ convergence for $p in [1,6)$
$square$
functional-analysis convergence
$endgroup$
I'd like a check for the following exercise I found online
Discuss the $L^{p}(0,1)$, $pin[1,+infty]$ convergence of the
sequence of functions $$ u_n(x)= left{ begin{array}{c} n^{4/3}x,
quad 0 < x <frac2n \ 0, quad frac2n leq x <1 \ end{array}
right. $$
Solution
The pointwise limit is $0$:
$lim_{n rightarrow +infty} u_{n}(x)=0$, where $u_n(x)= mathbb{1}_{(0,frac2n)}(x) n^{frac43} x$
In fact, $forall epsilon>0 exists n_0 text{ s.t } forall ngeq n_0:|frac2 n| < epsilon $
I'll study separately the cases for $p=+infty$, and $pgeq 1$.
- $p=+infty$
$lim_n sup_{x in (0,1)} |u_n(x)|=lim_n sup_{x in (0,frac2n)} n^{frac43}x=lim_n 2 n^{frac13} rightarrow +infty$ and thus there's no $L^{infty}$ convergence in $(0,1)$
- $p geq 1$
The integral to be computed is $int_0^1 |u_n(x)|^pdx=frac{2^{p+1}}{p+1} cdot n^{frac{p-3}{3} }$ and taking the limit for $n rightarrow +infty$ this is $0$ iff $frac{p-3}{3}<1$, thus we have $L^{p}(0,1)$ convergence for $p in [1,6)$
$square$
functional-analysis convergence
functional-analysis convergence
asked Dec 11 '18 at 22:25
VoBVoB
734513
734513
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have made two mistakes. $int u_n^{p}= cn^{4p/3} frac 1 {n^{p+1}}$ for some positive constant $c$ and this tends to $0$ iff $frac {4p} 3 <p+1$ and this is true iff $p < 3$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035921%2flp-convergence-of-a-sequence-of-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have made two mistakes. $int u_n^{p}= cn^{4p/3} frac 1 {n^{p+1}}$ for some positive constant $c$ and this tends to $0$ iff $frac {4p} 3 <p+1$ and this is true iff $p < 3$.
$endgroup$
add a comment |
$begingroup$
You have made two mistakes. $int u_n^{p}= cn^{4p/3} frac 1 {n^{p+1}}$ for some positive constant $c$ and this tends to $0$ iff $frac {4p} 3 <p+1$ and this is true iff $p < 3$.
$endgroup$
add a comment |
$begingroup$
You have made two mistakes. $int u_n^{p}= cn^{4p/3} frac 1 {n^{p+1}}$ for some positive constant $c$ and this tends to $0$ iff $frac {4p} 3 <p+1$ and this is true iff $p < 3$.
$endgroup$
You have made two mistakes. $int u_n^{p}= cn^{4p/3} frac 1 {n^{p+1}}$ for some positive constant $c$ and this tends to $0$ iff $frac {4p} 3 <p+1$ and this is true iff $p < 3$.
answered Dec 11 '18 at 23:42
Kavi Rama MurthyKavi Rama Murthy
61.8k42262
61.8k42262
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035921%2flp-convergence-of-a-sequence-of-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown