How to find representation of polynomial w.r.t different basis
$begingroup$
Let $B$ be the basis of the vector space of polynomials of degree less than or equal to 2. $B = {1, t-1,(t-1)^2}$.
Let $u = 2t^2-5t+6$. How do you find $u_b$, the coordinate vector of $u$ relative to $B$? In particular, I'm looking how would you do this using matrices.
polynomials vector-spaces linear-transformations
$endgroup$
add a comment |
$begingroup$
Let $B$ be the basis of the vector space of polynomials of degree less than or equal to 2. $B = {1, t-1,(t-1)^2}$.
Let $u = 2t^2-5t+6$. How do you find $u_b$, the coordinate vector of $u$ relative to $B$? In particular, I'm looking how would you do this using matrices.
polynomials vector-spaces linear-transformations
$endgroup$
add a comment |
$begingroup$
Let $B$ be the basis of the vector space of polynomials of degree less than or equal to 2. $B = {1, t-1,(t-1)^2}$.
Let $u = 2t^2-5t+6$. How do you find $u_b$, the coordinate vector of $u$ relative to $B$? In particular, I'm looking how would you do this using matrices.
polynomials vector-spaces linear-transformations
$endgroup$
Let $B$ be the basis of the vector space of polynomials of degree less than or equal to 2. $B = {1, t-1,(t-1)^2}$.
Let $u = 2t^2-5t+6$. How do you find $u_b$, the coordinate vector of $u$ relative to $B$? In particular, I'm looking how would you do this using matrices.
polynomials vector-spaces linear-transformations
polynomials vector-spaces linear-transformations
asked Apr 15 '15 at 23:56
larrylarry
36611130
36611130
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$mathcal{B}= left{{ begin{bmatrix}0t^2 \ 0t \ 1 end{bmatrix}, begin{bmatrix}0t^2 \ 1t \ -1 end{bmatrix}, begin{bmatrix}1t^2 \ -2t \ 1 end{bmatrix}}right}$$
This gives us the change of basis matrix:
$$mathbf{B} = begin{bmatrix}0 & 0 & 1\ 0 & 1 & -2\ 1 & -1 & 1end{bmatrix} $$
which is invertible, because $mathcal{B}$ is a basis and $mathbf{B}$ is square:
$$mathbf{B}^{-1} = begin{bmatrix}1 & 1 & 1\ 2 & 1 & 0\ 1 & 0 & 0end{bmatrix} $$
To convert a vector to your desired coordinate system, multiply the vector on the left by this matrix:
$$left[{u}right]_{mathcal{B}} = mathbf{B}^{-1} begin{bmatrix}2 \ -5 \ 6 end{bmatrix} = color{blue}{begin{bmatrix}3 \ -1 \ 2 end{bmatrix}} $$
Which is to say:
$$2t^2 -5t + 6 = color{blue}{3} color{blue}{-1}(t-1) + color{blue}{2}(t-1)^2$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1236678%2fhow-to-find-representation-of-polynomial-w-r-t-different-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$mathcal{B}= left{{ begin{bmatrix}0t^2 \ 0t \ 1 end{bmatrix}, begin{bmatrix}0t^2 \ 1t \ -1 end{bmatrix}, begin{bmatrix}1t^2 \ -2t \ 1 end{bmatrix}}right}$$
This gives us the change of basis matrix:
$$mathbf{B} = begin{bmatrix}0 & 0 & 1\ 0 & 1 & -2\ 1 & -1 & 1end{bmatrix} $$
which is invertible, because $mathcal{B}$ is a basis and $mathbf{B}$ is square:
$$mathbf{B}^{-1} = begin{bmatrix}1 & 1 & 1\ 2 & 1 & 0\ 1 & 0 & 0end{bmatrix} $$
To convert a vector to your desired coordinate system, multiply the vector on the left by this matrix:
$$left[{u}right]_{mathcal{B}} = mathbf{B}^{-1} begin{bmatrix}2 \ -5 \ 6 end{bmatrix} = color{blue}{begin{bmatrix}3 \ -1 \ 2 end{bmatrix}} $$
Which is to say:
$$2t^2 -5t + 6 = color{blue}{3} color{blue}{-1}(t-1) + color{blue}{2}(t-1)^2$$
$endgroup$
add a comment |
$begingroup$
$$mathcal{B}= left{{ begin{bmatrix}0t^2 \ 0t \ 1 end{bmatrix}, begin{bmatrix}0t^2 \ 1t \ -1 end{bmatrix}, begin{bmatrix}1t^2 \ -2t \ 1 end{bmatrix}}right}$$
This gives us the change of basis matrix:
$$mathbf{B} = begin{bmatrix}0 & 0 & 1\ 0 & 1 & -2\ 1 & -1 & 1end{bmatrix} $$
which is invertible, because $mathcal{B}$ is a basis and $mathbf{B}$ is square:
$$mathbf{B}^{-1} = begin{bmatrix}1 & 1 & 1\ 2 & 1 & 0\ 1 & 0 & 0end{bmatrix} $$
To convert a vector to your desired coordinate system, multiply the vector on the left by this matrix:
$$left[{u}right]_{mathcal{B}} = mathbf{B}^{-1} begin{bmatrix}2 \ -5 \ 6 end{bmatrix} = color{blue}{begin{bmatrix}3 \ -1 \ 2 end{bmatrix}} $$
Which is to say:
$$2t^2 -5t + 6 = color{blue}{3} color{blue}{-1}(t-1) + color{blue}{2}(t-1)^2$$
$endgroup$
add a comment |
$begingroup$
$$mathcal{B}= left{{ begin{bmatrix}0t^2 \ 0t \ 1 end{bmatrix}, begin{bmatrix}0t^2 \ 1t \ -1 end{bmatrix}, begin{bmatrix}1t^2 \ -2t \ 1 end{bmatrix}}right}$$
This gives us the change of basis matrix:
$$mathbf{B} = begin{bmatrix}0 & 0 & 1\ 0 & 1 & -2\ 1 & -1 & 1end{bmatrix} $$
which is invertible, because $mathcal{B}$ is a basis and $mathbf{B}$ is square:
$$mathbf{B}^{-1} = begin{bmatrix}1 & 1 & 1\ 2 & 1 & 0\ 1 & 0 & 0end{bmatrix} $$
To convert a vector to your desired coordinate system, multiply the vector on the left by this matrix:
$$left[{u}right]_{mathcal{B}} = mathbf{B}^{-1} begin{bmatrix}2 \ -5 \ 6 end{bmatrix} = color{blue}{begin{bmatrix}3 \ -1 \ 2 end{bmatrix}} $$
Which is to say:
$$2t^2 -5t + 6 = color{blue}{3} color{blue}{-1}(t-1) + color{blue}{2}(t-1)^2$$
$endgroup$
$$mathcal{B}= left{{ begin{bmatrix}0t^2 \ 0t \ 1 end{bmatrix}, begin{bmatrix}0t^2 \ 1t \ -1 end{bmatrix}, begin{bmatrix}1t^2 \ -2t \ 1 end{bmatrix}}right}$$
This gives us the change of basis matrix:
$$mathbf{B} = begin{bmatrix}0 & 0 & 1\ 0 & 1 & -2\ 1 & -1 & 1end{bmatrix} $$
which is invertible, because $mathcal{B}$ is a basis and $mathbf{B}$ is square:
$$mathbf{B}^{-1} = begin{bmatrix}1 & 1 & 1\ 2 & 1 & 0\ 1 & 0 & 0end{bmatrix} $$
To convert a vector to your desired coordinate system, multiply the vector on the left by this matrix:
$$left[{u}right]_{mathcal{B}} = mathbf{B}^{-1} begin{bmatrix}2 \ -5 \ 6 end{bmatrix} = color{blue}{begin{bmatrix}3 \ -1 \ 2 end{bmatrix}} $$
Which is to say:
$$2t^2 -5t + 6 = color{blue}{3} color{blue}{-1}(t-1) + color{blue}{2}(t-1)^2$$
edited Apr 16 '15 at 0:24
answered Apr 16 '15 at 0:16
GFauxPasGFauxPas
4,16311229
4,16311229
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1236678%2fhow-to-find-representation-of-polynomial-w-r-t-different-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown