Derivative of a function defined in terms of another function
$begingroup$
Let $F: mathbf{R^2} rightarrow mathbf{R}$ have continuous second order partial derivatives. Assume its gradient is $nabla f(0,0) = (1,2)$ and its Hessian matrix is
$$begin{pmatrix}
1 & 2 \
2 &4
end{pmatrix} = nabla ^2 f $$
Define $phi (t) = f(t, 2t)$. Find $phi ^ prime (0)$ and $phi ^ {prime prime} (0)$.
Any hints? I know how to do this when $f$ is explicitly defined, but not when just given the gradient/Hessian at a certain point.
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $F: mathbf{R^2} rightarrow mathbf{R}$ have continuous second order partial derivatives. Assume its gradient is $nabla f(0,0) = (1,2)$ and its Hessian matrix is
$$begin{pmatrix}
1 & 2 \
2 &4
end{pmatrix} = nabla ^2 f $$
Define $phi (t) = f(t, 2t)$. Find $phi ^ prime (0)$ and $phi ^ {prime prime} (0)$.
Any hints? I know how to do this when $f$ is explicitly defined, but not when just given the gradient/Hessian at a certain point.
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $F: mathbf{R^2} rightarrow mathbf{R}$ have continuous second order partial derivatives. Assume its gradient is $nabla f(0,0) = (1,2)$ and its Hessian matrix is
$$begin{pmatrix}
1 & 2 \
2 &4
end{pmatrix} = nabla ^2 f $$
Define $phi (t) = f(t, 2t)$. Find $phi ^ prime (0)$ and $phi ^ {prime prime} (0)$.
Any hints? I know how to do this when $f$ is explicitly defined, but not when just given the gradient/Hessian at a certain point.
real-analysis
$endgroup$
Let $F: mathbf{R^2} rightarrow mathbf{R}$ have continuous second order partial derivatives. Assume its gradient is $nabla f(0,0) = (1,2)$ and its Hessian matrix is
$$begin{pmatrix}
1 & 2 \
2 &4
end{pmatrix} = nabla ^2 f $$
Define $phi (t) = f(t, 2t)$. Find $phi ^ prime (0)$ and $phi ^ {prime prime} (0)$.
Any hints? I know how to do this when $f$ is explicitly defined, but not when just given the gradient/Hessian at a certain point.
real-analysis
real-analysis
asked Dec 17 '18 at 16:01
hopelessundergradhopelessundergrad
292
292
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then
begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
end{equation}
then put $t=0$ (h' is a column vector, (1,2) as a column)
$$ phi '(0)=nabla f (h(0))h'(0) $$
$$ phi '(0)=nabla f (0,0)h'(0) $$
$$ phi '(0)=(1,2)(1,2)^{T} $$
$$ phi '(0)=1+4=5$$
Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):
$$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
so puting $t=0$, we have:
$$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)={ left[ {begin{array}{cc}
1 & 2 \
2 & 4 \
end{array} } right] left[ {begin{array}{c}
1 \
2 \
end{array} } right] } left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=left[ {begin{array}{c}
5 \
10 \
end{array} } right] left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi''(0)=25.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044113%2fderivative-of-a-function-defined-in-terms-of-another-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then
begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
end{equation}
then put $t=0$ (h' is a column vector, (1,2) as a column)
$$ phi '(0)=nabla f (h(0))h'(0) $$
$$ phi '(0)=nabla f (0,0)h'(0) $$
$$ phi '(0)=(1,2)(1,2)^{T} $$
$$ phi '(0)=1+4=5$$
Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):
$$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
so puting $t=0$, we have:
$$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)={ left[ {begin{array}{cc}
1 & 2 \
2 & 4 \
end{array} } right] left[ {begin{array}{c}
1 \
2 \
end{array} } right] } left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=left[ {begin{array}{c}
5 \
10 \
end{array} } right] left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi''(0)=25.$$
$endgroup$
add a comment |
$begingroup$
Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then
begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
end{equation}
then put $t=0$ (h' is a column vector, (1,2) as a column)
$$ phi '(0)=nabla f (h(0))h'(0) $$
$$ phi '(0)=nabla f (0,0)h'(0) $$
$$ phi '(0)=(1,2)(1,2)^{T} $$
$$ phi '(0)=1+4=5$$
Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):
$$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
so puting $t=0$, we have:
$$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)={ left[ {begin{array}{cc}
1 & 2 \
2 & 4 \
end{array} } right] left[ {begin{array}{c}
1 \
2 \
end{array} } right] } left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=left[ {begin{array}{c}
5 \
10 \
end{array} } right] left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi''(0)=25.$$
$endgroup$
add a comment |
$begingroup$
Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then
begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
end{equation}
then put $t=0$ (h' is a column vector, (1,2) as a column)
$$ phi '(0)=nabla f (h(0))h'(0) $$
$$ phi '(0)=nabla f (0,0)h'(0) $$
$$ phi '(0)=(1,2)(1,2)^{T} $$
$$ phi '(0)=1+4=5$$
Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):
$$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
so puting $t=0$, we have:
$$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)={ left[ {begin{array}{cc}
1 & 2 \
2 & 4 \
end{array} } right] left[ {begin{array}{c}
1 \
2 \
end{array} } right] } left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=left[ {begin{array}{c}
5 \
10 \
end{array} } right] left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi''(0)=25.$$
$endgroup$
Just aplpy chain rule, nota that $phi=fcirc h$, with $h:mathbb{R}to mathbb{R}^{2}$, $h(t)=(t,2t)$. Then
begin{equation} phi '(t)=nabla f (h(t)) h'(t) hspace{3cm}(1)
end{equation}
then put $t=0$ (h' is a column vector, (1,2) as a column)
$$ phi '(0)=nabla f (h(0))h'(0) $$
$$ phi '(0)=nabla f (0,0)h'(0) $$
$$ phi '(0)=(1,2)(1,2)^{T} $$
$$ phi '(0)=1+4=5$$
Then derive again in (1) (which can be writenn as $[(nabla fcirc h)(t)](1,2)^{T}$ to use the chain rule again ) to find $phi''$ taking into account that $h'(t)=(1,2)^{T}$ (constant):
$$phi ''(t)=[nabla^{2} f (h(t))h'(t) ]left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
so puting $t=0$, we have:
$$phi ''(0)=[nabla^{2} f (h(0))h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=[nabla^{2} f (0,0) h'(0)] left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)={ left[ {begin{array}{cc}
1 & 2 \
2 & 4 \
end{array} } right] left[ {begin{array}{c}
1 \
2 \
end{array} } right] } left[ {begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi ''(0)=left[ {begin{array}{c}
5 \
10 \
end{array} } right] left[{begin{array}{c}
1 \
2 \
end{array} } right] $$
$$phi''(0)=25.$$
edited Dec 17 '18 at 22:36
answered Dec 17 '18 at 16:08
Gabriel PalauGabriel Palau
1126
1126
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044113%2fderivative-of-a-function-defined-in-terms-of-another-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown