is this set invariant under a operator?












0












$begingroup$


Let $E$ be a Banach space, and $T:Erightarrow E$ a continuous bounded mapping.



Let $x_0in E$ and $x_n=T(x_{n-1})$, $U=overline{conv}(x_0,x_1,...,x_n,...)$.



Is $U$ invariant under the operator $T$, i.e $T(U)subset U$?



Edit:
We donotes by $overline{conv}(M)$ the closure of the convex hull of $M$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $U$? ${}{}$
    $endgroup$
    – Will M.
    Dec 18 '18 at 17:37










  • $begingroup$
    @Will M. I edited my post, thank you
    $endgroup$
    – Motaka
    Dec 19 '18 at 9:19






  • 2




    $begingroup$
    This is false in general. If you assume that $T$ is affine, then it's true.
    $endgroup$
    – Song
    Dec 19 '18 at 12:50
















0












$begingroup$


Let $E$ be a Banach space, and $T:Erightarrow E$ a continuous bounded mapping.



Let $x_0in E$ and $x_n=T(x_{n-1})$, $U=overline{conv}(x_0,x_1,...,x_n,...)$.



Is $U$ invariant under the operator $T$, i.e $T(U)subset U$?



Edit:
We donotes by $overline{conv}(M)$ the closure of the convex hull of $M$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $U$? ${}{}$
    $endgroup$
    – Will M.
    Dec 18 '18 at 17:37










  • $begingroup$
    @Will M. I edited my post, thank you
    $endgroup$
    – Motaka
    Dec 19 '18 at 9:19






  • 2




    $begingroup$
    This is false in general. If you assume that $T$ is affine, then it's true.
    $endgroup$
    – Song
    Dec 19 '18 at 12:50














0












0








0





$begingroup$


Let $E$ be a Banach space, and $T:Erightarrow E$ a continuous bounded mapping.



Let $x_0in E$ and $x_n=T(x_{n-1})$, $U=overline{conv}(x_0,x_1,...,x_n,...)$.



Is $U$ invariant under the operator $T$, i.e $T(U)subset U$?



Edit:
We donotes by $overline{conv}(M)$ the closure of the convex hull of $M$.










share|cite|improve this question











$endgroup$




Let $E$ be a Banach space, and $T:Erightarrow E$ a continuous bounded mapping.



Let $x_0in E$ and $x_n=T(x_{n-1})$, $U=overline{conv}(x_0,x_1,...,x_n,...)$.



Is $U$ invariant under the operator $T$, i.e $T(U)subset U$?



Edit:
We donotes by $overline{conv}(M)$ the closure of the convex hull of $M$.







real-analysis banach-spaces fixed-point-theorems






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 12:29







Motaka

















asked Dec 17 '18 at 16:08









MotakaMotaka

238111




238111












  • $begingroup$
    What is $U$? ${}{}$
    $endgroup$
    – Will M.
    Dec 18 '18 at 17:37










  • $begingroup$
    @Will M. I edited my post, thank you
    $endgroup$
    – Motaka
    Dec 19 '18 at 9:19






  • 2




    $begingroup$
    This is false in general. If you assume that $T$ is affine, then it's true.
    $endgroup$
    – Song
    Dec 19 '18 at 12:50


















  • $begingroup$
    What is $U$? ${}{}$
    $endgroup$
    – Will M.
    Dec 18 '18 at 17:37










  • $begingroup$
    @Will M. I edited my post, thank you
    $endgroup$
    – Motaka
    Dec 19 '18 at 9:19






  • 2




    $begingroup$
    This is false in general. If you assume that $T$ is affine, then it's true.
    $endgroup$
    – Song
    Dec 19 '18 at 12:50
















$begingroup$
What is $U$? ${}{}$
$endgroup$
– Will M.
Dec 18 '18 at 17:37




$begingroup$
What is $U$? ${}{}$
$endgroup$
– Will M.
Dec 18 '18 at 17:37












$begingroup$
@Will M. I edited my post, thank you
$endgroup$
– Motaka
Dec 19 '18 at 9:19




$begingroup$
@Will M. I edited my post, thank you
$endgroup$
– Motaka
Dec 19 '18 at 9:19




2




2




$begingroup$
This is false in general. If you assume that $T$ is affine, then it's true.
$endgroup$
– Song
Dec 19 '18 at 12:50




$begingroup$
This is false in general. If you assume that $T$ is affine, then it's true.
$endgroup$
– Song
Dec 19 '18 at 12:50










1 Answer
1






active

oldest

votes


















1












$begingroup$

Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.



$x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :



$$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
But :
$$T(U) = T([0,1]) = [1,2]$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044121%2fis-this-set-invariant-under-a-operator%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.



    $x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :



    $$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
    But :
    $$T(U) = T([0,1]) = [1,2]$$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.



      $x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :



      $$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
      But :
      $$T(U) = T([0,1]) = [1,2]$$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.



        $x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :



        $$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
        But :
        $$T(U) = T([0,1]) = [1,2]$$






        share|cite|improve this answer











        $endgroup$



        Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.



        $x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :



        $$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
        But :
        $$T(U) = T([0,1]) = [1,2]$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 19 '18 at 12:47

























        answered Dec 19 '18 at 12:41









        RcnScRcnSc

        1265




        1265






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044121%2fis-this-set-invariant-under-a-operator%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten