is this set invariant under a operator?
$begingroup$
Let $E$ be a Banach space, and $T:Erightarrow E$ a continuous bounded mapping.
Let $x_0in E$ and $x_n=T(x_{n-1})$, $U=overline{conv}(x_0,x_1,...,x_n,...)$.
Is $U$ invariant under the operator $T$, i.e $T(U)subset U$?
Edit:
We donotes by $overline{conv}(M)$ the closure of the convex hull of $M$.
real-analysis banach-spaces fixed-point-theorems
$endgroup$
add a comment |
$begingroup$
Let $E$ be a Banach space, and $T:Erightarrow E$ a continuous bounded mapping.
Let $x_0in E$ and $x_n=T(x_{n-1})$, $U=overline{conv}(x_0,x_1,...,x_n,...)$.
Is $U$ invariant under the operator $T$, i.e $T(U)subset U$?
Edit:
We donotes by $overline{conv}(M)$ the closure of the convex hull of $M$.
real-analysis banach-spaces fixed-point-theorems
$endgroup$
$begingroup$
What is $U$? ${}{}$
$endgroup$
– Will M.
Dec 18 '18 at 17:37
$begingroup$
@Will M. I edited my post, thank you
$endgroup$
– Motaka
Dec 19 '18 at 9:19
2
$begingroup$
This is false in general. If you assume that $T$ is affine, then it's true.
$endgroup$
– Song
Dec 19 '18 at 12:50
add a comment |
$begingroup$
Let $E$ be a Banach space, and $T:Erightarrow E$ a continuous bounded mapping.
Let $x_0in E$ and $x_n=T(x_{n-1})$, $U=overline{conv}(x_0,x_1,...,x_n,...)$.
Is $U$ invariant under the operator $T$, i.e $T(U)subset U$?
Edit:
We donotes by $overline{conv}(M)$ the closure of the convex hull of $M$.
real-analysis banach-spaces fixed-point-theorems
$endgroup$
Let $E$ be a Banach space, and $T:Erightarrow E$ a continuous bounded mapping.
Let $x_0in E$ and $x_n=T(x_{n-1})$, $U=overline{conv}(x_0,x_1,...,x_n,...)$.
Is $U$ invariant under the operator $T$, i.e $T(U)subset U$?
Edit:
We donotes by $overline{conv}(M)$ the closure of the convex hull of $M$.
real-analysis banach-spaces fixed-point-theorems
real-analysis banach-spaces fixed-point-theorems
edited Dec 19 '18 at 12:29
Motaka
asked Dec 17 '18 at 16:08
MotakaMotaka
238111
238111
$begingroup$
What is $U$? ${}{}$
$endgroup$
– Will M.
Dec 18 '18 at 17:37
$begingroup$
@Will M. I edited my post, thank you
$endgroup$
– Motaka
Dec 19 '18 at 9:19
2
$begingroup$
This is false in general. If you assume that $T$ is affine, then it's true.
$endgroup$
– Song
Dec 19 '18 at 12:50
add a comment |
$begingroup$
What is $U$? ${}{}$
$endgroup$
– Will M.
Dec 18 '18 at 17:37
$begingroup$
@Will M. I edited my post, thank you
$endgroup$
– Motaka
Dec 19 '18 at 9:19
2
$begingroup$
This is false in general. If you assume that $T$ is affine, then it's true.
$endgroup$
– Song
Dec 19 '18 at 12:50
$begingroup$
What is $U$? ${}{}$
$endgroup$
– Will M.
Dec 18 '18 at 17:37
$begingroup$
What is $U$? ${}{}$
$endgroup$
– Will M.
Dec 18 '18 at 17:37
$begingroup$
@Will M. I edited my post, thank you
$endgroup$
– Motaka
Dec 19 '18 at 9:19
$begingroup$
@Will M. I edited my post, thank you
$endgroup$
– Motaka
Dec 19 '18 at 9:19
2
2
$begingroup$
This is false in general. If you assume that $T$ is affine, then it's true.
$endgroup$
– Song
Dec 19 '18 at 12:50
$begingroup$
This is false in general. If you assume that $T$ is affine, then it's true.
$endgroup$
– Song
Dec 19 '18 at 12:50
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.
$x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :
$$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
But :
$$T(U) = T([0,1]) = [1,2]$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044121%2fis-this-set-invariant-under-a-operator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.
$x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :
$$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
But :
$$T(U) = T([0,1]) = [1,2]$$
$endgroup$
add a comment |
$begingroup$
Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.
$x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :
$$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
But :
$$T(U) = T([0,1]) = [1,2]$$
$endgroup$
add a comment |
$begingroup$
Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.
$x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :
$$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
But :
$$T(U) = T([0,1]) = [1,2]$$
$endgroup$
Take $E = mathbb{R}$, $T(x) = 1 + sin(pi x)$ and $x_0=0$.
$x_1 = T(0) = 1$, and $forall n>0, x_n = T(x_{n-1}) = T(1) = 1$, so :
$$U=overline{conv}(x_0,x_1,...,x_n,...) = overline{conv}(0,1,...,1,...) = [0, 1]$$
But :
$$T(U) = T([0,1]) = [1,2]$$
edited Dec 19 '18 at 12:47
answered Dec 19 '18 at 12:41
RcnScRcnSc
1265
1265
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044121%2fis-this-set-invariant-under-a-operator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is $U$? ${}{}$
$endgroup$
– Will M.
Dec 18 '18 at 17:37
$begingroup$
@Will M. I edited my post, thank you
$endgroup$
– Motaka
Dec 19 '18 at 9:19
2
$begingroup$
This is false in general. If you assume that $T$ is affine, then it's true.
$endgroup$
– Song
Dec 19 '18 at 12:50