Evaluate $int_{-pi/4}^{pi/4}frac{x}{sin x}mathrm{d}x$












12












$begingroup$


I am working on the integral
$$I=int_{-pi/4}^{pi/4}frac{x}{sin x}mathrm{d}x=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x$$
Which I am fairly confident has a closed form, as $$int_{0}^{pi/2}frac{x}{sin x}mathrm{d}x=2G$$
Where $G$ is Catalan's constant.



Preforming a tangent half angle substitution, we have that
$$I=4int_0^{sqrt{2}-1}frac{arctan x}{x}mathrm{d}x$$
Then using $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1}$$
We have
$$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}$$
Which is painfully similar to $G$. I do not know how to deal with that extra $(sqrt{2}-1)^{2n+1}$ bit though...



In another post of mine I showed that
$$I=pisum_{ngeq1} nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
And similarly I showed that
$$sum_{ngeq1}nlogbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=frac{4G}pi$$
So I have to questions. How do I find an exact value for $I$? And are the last two series representations correct? Thanks.



Major Edit:



Okay so I found a closed form for the integral. Wolfy gave me
$$intfrac{x}{sin x}mathrm{d}x=ibigg(text{Li}_2(-e^{ix})-text{Li}_2(e^{ix})bigg)+xlogfrac{1-e^{ix}}{1+e^{ix}}$$
I guess that Wolfy didn't want to do the algebra, so I did it by hand. It took me like $10$ minutes, but I am pretty sure that
$$I=-frac34G+frac{pi^2}4bigg(frac{13}{24}-ibigg)-frac{ipi}4log(1+sqrt{2})+frac{i-1}{32sqrt{2}}bigg[psi^{(1)}bigg(frac{5}{8}bigg)-psi^{(1)}bigg(frac{1}{8}bigg)bigg]+frac{i+1}{32sqrt{2}}bigg[psi^{(1)}bigg(frac{3}{8}bigg)-psi^{(1)}bigg(frac{7}{8}bigg)bigg]$$
Where $psi^{(1)}$ is the first derivative of the di-gamma function.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I'm not sure why you are confident that your integral has a closed form. Not that Wolfram Alpha is the last word on integration, but it is usually pretty good at recognizing constants, and in this case it does not.
    $endgroup$
    – DeficientMathDude
    Dec 21 '18 at 2:49








  • 1




    $begingroup$
    @DeficientMathDude - You just contradicted yourself.
    $endgroup$
    – DavidG
    Dec 21 '18 at 3:31










  • $begingroup$
    Wolframalpha numerical value for integral = 1.62706 and 2*G = 1.83193118
    $endgroup$
    – DavidG
    Dec 21 '18 at 3:39










  • $begingroup$
    You can write $frac{x}{sin(x)}$ as $xcsc(x)$. See where I'm going with this?
    $endgroup$
    – Aniruddh Venkatesan
    Dec 21 '18 at 3:42






  • 1




    $begingroup$
    @DeficientMathDude see the edit I just made
    $endgroup$
    – clathratus
    Dec 21 '18 at 3:50
















12












$begingroup$


I am working on the integral
$$I=int_{-pi/4}^{pi/4}frac{x}{sin x}mathrm{d}x=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x$$
Which I am fairly confident has a closed form, as $$int_{0}^{pi/2}frac{x}{sin x}mathrm{d}x=2G$$
Where $G$ is Catalan's constant.



Preforming a tangent half angle substitution, we have that
$$I=4int_0^{sqrt{2}-1}frac{arctan x}{x}mathrm{d}x$$
Then using $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1}$$
We have
$$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}$$
Which is painfully similar to $G$. I do not know how to deal with that extra $(sqrt{2}-1)^{2n+1}$ bit though...



In another post of mine I showed that
$$I=pisum_{ngeq1} nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
And similarly I showed that
$$sum_{ngeq1}nlogbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=frac{4G}pi$$
So I have to questions. How do I find an exact value for $I$? And are the last two series representations correct? Thanks.



Major Edit:



Okay so I found a closed form for the integral. Wolfy gave me
$$intfrac{x}{sin x}mathrm{d}x=ibigg(text{Li}_2(-e^{ix})-text{Li}_2(e^{ix})bigg)+xlogfrac{1-e^{ix}}{1+e^{ix}}$$
I guess that Wolfy didn't want to do the algebra, so I did it by hand. It took me like $10$ minutes, but I am pretty sure that
$$I=-frac34G+frac{pi^2}4bigg(frac{13}{24}-ibigg)-frac{ipi}4log(1+sqrt{2})+frac{i-1}{32sqrt{2}}bigg[psi^{(1)}bigg(frac{5}{8}bigg)-psi^{(1)}bigg(frac{1}{8}bigg)bigg]+frac{i+1}{32sqrt{2}}bigg[psi^{(1)}bigg(frac{3}{8}bigg)-psi^{(1)}bigg(frac{7}{8}bigg)bigg]$$
Where $psi^{(1)}$ is the first derivative of the di-gamma function.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I'm not sure why you are confident that your integral has a closed form. Not that Wolfram Alpha is the last word on integration, but it is usually pretty good at recognizing constants, and in this case it does not.
    $endgroup$
    – DeficientMathDude
    Dec 21 '18 at 2:49








  • 1




    $begingroup$
    @DeficientMathDude - You just contradicted yourself.
    $endgroup$
    – DavidG
    Dec 21 '18 at 3:31










  • $begingroup$
    Wolframalpha numerical value for integral = 1.62706 and 2*G = 1.83193118
    $endgroup$
    – DavidG
    Dec 21 '18 at 3:39










  • $begingroup$
    You can write $frac{x}{sin(x)}$ as $xcsc(x)$. See where I'm going with this?
    $endgroup$
    – Aniruddh Venkatesan
    Dec 21 '18 at 3:42






  • 1




    $begingroup$
    @DeficientMathDude see the edit I just made
    $endgroup$
    – clathratus
    Dec 21 '18 at 3:50














12












12








12


6



$begingroup$


I am working on the integral
$$I=int_{-pi/4}^{pi/4}frac{x}{sin x}mathrm{d}x=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x$$
Which I am fairly confident has a closed form, as $$int_{0}^{pi/2}frac{x}{sin x}mathrm{d}x=2G$$
Where $G$ is Catalan's constant.



Preforming a tangent half angle substitution, we have that
$$I=4int_0^{sqrt{2}-1}frac{arctan x}{x}mathrm{d}x$$
Then using $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1}$$
We have
$$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}$$
Which is painfully similar to $G$. I do not know how to deal with that extra $(sqrt{2}-1)^{2n+1}$ bit though...



In another post of mine I showed that
$$I=pisum_{ngeq1} nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
And similarly I showed that
$$sum_{ngeq1}nlogbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=frac{4G}pi$$
So I have to questions. How do I find an exact value for $I$? And are the last two series representations correct? Thanks.



Major Edit:



Okay so I found a closed form for the integral. Wolfy gave me
$$intfrac{x}{sin x}mathrm{d}x=ibigg(text{Li}_2(-e^{ix})-text{Li}_2(e^{ix})bigg)+xlogfrac{1-e^{ix}}{1+e^{ix}}$$
I guess that Wolfy didn't want to do the algebra, so I did it by hand. It took me like $10$ minutes, but I am pretty sure that
$$I=-frac34G+frac{pi^2}4bigg(frac{13}{24}-ibigg)-frac{ipi}4log(1+sqrt{2})+frac{i-1}{32sqrt{2}}bigg[psi^{(1)}bigg(frac{5}{8}bigg)-psi^{(1)}bigg(frac{1}{8}bigg)bigg]+frac{i+1}{32sqrt{2}}bigg[psi^{(1)}bigg(frac{3}{8}bigg)-psi^{(1)}bigg(frac{7}{8}bigg)bigg]$$
Where $psi^{(1)}$ is the first derivative of the di-gamma function.










share|cite|improve this question











$endgroup$




I am working on the integral
$$I=int_{-pi/4}^{pi/4}frac{x}{sin x}mathrm{d}x=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x$$
Which I am fairly confident has a closed form, as $$int_{0}^{pi/2}frac{x}{sin x}mathrm{d}x=2G$$
Where $G$ is Catalan's constant.



Preforming a tangent half angle substitution, we have that
$$I=4int_0^{sqrt{2}-1}frac{arctan x}{x}mathrm{d}x$$
Then using $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1}$$
We have
$$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}$$
Which is painfully similar to $G$. I do not know how to deal with that extra $(sqrt{2}-1)^{2n+1}$ bit though...



In another post of mine I showed that
$$I=pisum_{ngeq1} nlogbigg(frac{4n+1}{4n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}$$
And similarly I showed that
$$sum_{ngeq1}nlogbigg(frac{2n+1}{2n-1}bigg)prod_{kgeq1\kneq n}frac{k^2}{k^2-n^2}=frac{4G}pi$$
So I have to questions. How do I find an exact value for $I$? And are the last two series representations correct? Thanks.



Major Edit:



Okay so I found a closed form for the integral. Wolfy gave me
$$intfrac{x}{sin x}mathrm{d}x=ibigg(text{Li}_2(-e^{ix})-text{Li}_2(e^{ix})bigg)+xlogfrac{1-e^{ix}}{1+e^{ix}}$$
I guess that Wolfy didn't want to do the algebra, so I did it by hand. It took me like $10$ minutes, but I am pretty sure that
$$I=-frac34G+frac{pi^2}4bigg(frac{13}{24}-ibigg)-frac{ipi}4log(1+sqrt{2})+frac{i-1}{32sqrt{2}}bigg[psi^{(1)}bigg(frac{5}{8}bigg)-psi^{(1)}bigg(frac{1}{8}bigg)bigg]+frac{i+1}{32sqrt{2}}bigg[psi^{(1)}bigg(frac{3}{8}bigg)-psi^{(1)}bigg(frac{7}{8}bigg)bigg]$$
Where $psi^{(1)}$ is the first derivative of the di-gamma function.







integration sequences-and-series definite-integrals closed-form






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 21 '18 at 5:12







clathratus

















asked Dec 21 '18 at 2:43









clathratusclathratus

5,2291438




5,2291438








  • 1




    $begingroup$
    I'm not sure why you are confident that your integral has a closed form. Not that Wolfram Alpha is the last word on integration, but it is usually pretty good at recognizing constants, and in this case it does not.
    $endgroup$
    – DeficientMathDude
    Dec 21 '18 at 2:49








  • 1




    $begingroup$
    @DeficientMathDude - You just contradicted yourself.
    $endgroup$
    – DavidG
    Dec 21 '18 at 3:31










  • $begingroup$
    Wolframalpha numerical value for integral = 1.62706 and 2*G = 1.83193118
    $endgroup$
    – DavidG
    Dec 21 '18 at 3:39










  • $begingroup$
    You can write $frac{x}{sin(x)}$ as $xcsc(x)$. See where I'm going with this?
    $endgroup$
    – Aniruddh Venkatesan
    Dec 21 '18 at 3:42






  • 1




    $begingroup$
    @DeficientMathDude see the edit I just made
    $endgroup$
    – clathratus
    Dec 21 '18 at 3:50














  • 1




    $begingroup$
    I'm not sure why you are confident that your integral has a closed form. Not that Wolfram Alpha is the last word on integration, but it is usually pretty good at recognizing constants, and in this case it does not.
    $endgroup$
    – DeficientMathDude
    Dec 21 '18 at 2:49








  • 1




    $begingroup$
    @DeficientMathDude - You just contradicted yourself.
    $endgroup$
    – DavidG
    Dec 21 '18 at 3:31










  • $begingroup$
    Wolframalpha numerical value for integral = 1.62706 and 2*G = 1.83193118
    $endgroup$
    – DavidG
    Dec 21 '18 at 3:39










  • $begingroup$
    You can write $frac{x}{sin(x)}$ as $xcsc(x)$. See where I'm going with this?
    $endgroup$
    – Aniruddh Venkatesan
    Dec 21 '18 at 3:42






  • 1




    $begingroup$
    @DeficientMathDude see the edit I just made
    $endgroup$
    – clathratus
    Dec 21 '18 at 3:50








1




1




$begingroup$
I'm not sure why you are confident that your integral has a closed form. Not that Wolfram Alpha is the last word on integration, but it is usually pretty good at recognizing constants, and in this case it does not.
$endgroup$
– DeficientMathDude
Dec 21 '18 at 2:49






$begingroup$
I'm not sure why you are confident that your integral has a closed form. Not that Wolfram Alpha is the last word on integration, but it is usually pretty good at recognizing constants, and in this case it does not.
$endgroup$
– DeficientMathDude
Dec 21 '18 at 2:49






1




1




$begingroup$
@DeficientMathDude - You just contradicted yourself.
$endgroup$
– DavidG
Dec 21 '18 at 3:31




$begingroup$
@DeficientMathDude - You just contradicted yourself.
$endgroup$
– DavidG
Dec 21 '18 at 3:31












$begingroup$
Wolframalpha numerical value for integral = 1.62706 and 2*G = 1.83193118
$endgroup$
– DavidG
Dec 21 '18 at 3:39




$begingroup$
Wolframalpha numerical value for integral = 1.62706 and 2*G = 1.83193118
$endgroup$
– DavidG
Dec 21 '18 at 3:39












$begingroup$
You can write $frac{x}{sin(x)}$ as $xcsc(x)$. See where I'm going with this?
$endgroup$
– Aniruddh Venkatesan
Dec 21 '18 at 3:42




$begingroup$
You can write $frac{x}{sin(x)}$ as $xcsc(x)$. See where I'm going with this?
$endgroup$
– Aniruddh Venkatesan
Dec 21 '18 at 3:42




1




1




$begingroup$
@DeficientMathDude see the edit I just made
$endgroup$
– clathratus
Dec 21 '18 at 3:50




$begingroup$
@DeficientMathDude see the edit I just made
$endgroup$
– clathratus
Dec 21 '18 at 3:50










5 Answers
5






active

oldest

votes


















6












$begingroup$

Let
$$I = int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = 2 int_0^{pi/4} x , text{cosec} , x , dx.$$
After integrating by parts we have
begin{align}
I &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (text{cosec} , x + cot x) , dx\
&= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (1 + cos x) , dx - 2 int_0^{pi/4} ln (sin x) , dx.
end{align}



The second of these integrals is perhaps (?) reasonably well known (for an evaluation, see here). The result is:
$$int_0^{pi/4} ln (sin x) , dx = -frac{1}{2} mathbf{G} - frac{pi}{4} ln 2,$$
where $mathbf{G}$ is Catalan's constant. Thus



$$I = -frac{pi}{2} ln (1 + sqrt{2}) + mathbf{G} + frac{pi}{2} ln 2 + 2I_1.$$



For the first of the integrals we will make use of the following formula, a proof of which can be found here
$$ln (1 + cos x) = 2 sum_{n = 1}^infty (-1)^{n + 1} frac{cos (nx)}{n} - ln 2.$$



So
begin{align}
I_1 &= int_0^{pi/4} ln (1 + cos x) , dx\
&= 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n} int_0^{pi/4} cos (nx) , dx - ln 2 int_0^{pi/4} dx\
&= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
&= -frac{pi}{4} ln 2 + 2 sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right ) + + 2 sum_{stackrel{{Large{n = 1}}}{n in text{even}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
&= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2n - 1) right ] - frac{1}{2} sum_{n = 1}^infty frac{1}{n^2} sin left (frac{n pi}{2} right )\
&= -frac{pi}{4} ln 2 + 2 S_1 - frac{1}{2} S_2.
end{align}



For the second of these sums,
begin{align}
S_2 &= sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{1}{n^2} sin left (frac{pi n}{2} right ) + sum_{stackrel{{Large{n = 1}}}{n in text{even}}} frac{1}{n^2} sin left (frac{pi n}{2} right )\
&= sum_{n = 0}^infty frac{(-1)^n}{(2n + 1)^2}\
&= mathbf{G},
end{align}

after a shift of the index $n mapsto 2n + 1$ in the odd sum has been made while the even sum is identically equal to zero.



For the first of the sums, as it converges absolutely we can split it up as folows:
$$S_1 = sum_{stackrel{{Large{n = 1}}}{n in 1,5,9,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 2,6,10,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 3,7,11,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 4,8,12,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ].$$



Shifting the indices as follows: $n mapsto 4n - 3, n mapsto 4n - 2, n mapsto 4n - 1, n mapsto 4n$ leads to
begin{align}
S_1 &= frac{1}{sqrt{2}} left [sum_{n = 1}^infty frac{1}{(8n - 7)^2} + sum_{n = 1}^infty frac{1}{(8n - 5)^2} - sum_{n = 1}^infty frac{1}{(8n - 3)^2} - sum_{n = 1}^infty frac{1}{(8n - 1)^2} right ]\
&= frac{1}{sqrt{2}} left [sum_{n = 0}^infty frac{1}{(8n + 1)^2} + sum_{n = 0}^infty frac{1}{(8n + 3)^2} - sum_{n = 0}^infty frac{1}{(8n + 5)^2} - sum_{n = 0}^infty frac{1}{(8n + 7)^2} right ]\
&= frac{1}{64 sqrt{2}} left [sum_{n = 0}^infty frac{1}{(n + 1/8)^2} + sum_{n = 0}^infty frac{1}{(n + 3/8)^2} - sum_{n = 0}^infty frac{1}{(n + 5/8)^2} - sum_{n = 0}^infty frac{1}{(n + 7/8)^2} right ]\
&= frac{1}{64 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],
end{align}

where we have made use of the series representation for the polygamma function of order one (as known as the trigamma function). So the value for $I_1$ is:
$$I_1 = -frac{pi}{4} ln 2 - frac{1}{2} mathbf{G} + frac{1}{32 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],$$
leading to a final result of
$$int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = -frac{pi}{2} ln (1 + sqrt{2}) + frac{1}{16 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ].$$





Converting the trigamma functions to Clausen functions of order two



Inspired by the answer given by Zacky in terms of the Clausen function of order two, here I will show how to convert my answer in terms of the 4 trigamma functions into 2 Clausen functions of order 2.



The relation between the Clausen function of order two and the trigamma function is given by (a proof of this can be found here)
$$text{Cl}_2 left (frac{q pi}{p} right ) = frac{1}{(2p)^{2m} (2m - 1)!} sum_{n = 1}^p sin left (frac{qnpi}{p} right ) left [psi^{(1)} left (frac{n}{2p} right ) + (-1)^q psi^{(1)} left (frac{n + p}{2p} right ) right ].$$
Setting $m = 1, q = 1, p = 4$ gives
begin{align}
text{Cl}_2 left (frac{pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } + psi^{(1)} left (frac{1}{4} right ) - psi^{(1)} left (frac{3}{4} right ) right.\
& qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ], qquad (*)
end{align}

and setting $m = 1, q = 3, p = 4$ gives
begin{align}
text{Cl}_2 left (frac{3pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } - psi^{(1)} left (frac{1}{4} right ) + psi^{(1)} left (frac{3}{4} right ) right.\
& qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ]. qquad (**)
end{align}

On adding ($*$) to ($**$) we see that
$$psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) = 32 sqrt{2} left [text{Cl}_2 left (frac{pi}{4} right ) + text{Cl}_2 left (frac{3pi}{4} right ) right ],$$
giving
$$int_{-pi/4}^{pi/4} frac{x}{sin x} , dx = -frac{pi}{2} ln (1 + sqrt{2}) + 2 , text{Cl}_2 left (frac{pi}{4} right ) + 2 , text{Cl}_2 left (frac{3pi}{4} right ).$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Nice answer! We might be able to reduce those $4$ values of the trigamma function using: $$psi_1left(xright)+psi_1left(x+frac12right)=4psi_1left(2xright)$$ I mean: $$psi_1left(frac18right)+left(frac58right) = 4psi_1left(frac14right)$$ And same with: $$psi_1left(frac38right)+left(frac78right) = 4psi_1left(frac34right)$$ And the values of $psi_1left(frac14right)$ and $psi_1left(frac34right)$ are known from here: mathworld.wolfram.com/TrigammaFunction.html
    $endgroup$
    – Zacky
    Dec 21 '18 at 12:06












  • $begingroup$
    Perfect beautiful wonderful amazing thank you for a really great answer :)
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:04










  • $begingroup$
    Also: does the closed form I found simplify to the answer you give?
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:56



















4












$begingroup$

For the purpose of an alternative method, mostly relying on Clausen function. We have:
$$I=int_{-pi/4}^{pi/4}frac{x}{sin x} dx=2int_0^{pi/4}xleft(lnleft(tanfrac{x}{2}right)right)' dx=2xlnleft(tanfrac{x}{2}right)bigg|_0^frac{pi}{4}-2int_0^frac{pi}{4}lnleft(tanfrac{x}{2}right)dx=$$
$$=frac{pi}{2}ln(sqrt 2-1)-2int_0^frac{pi}{4}left(lnleft(2sinfrac{x}{2}right)-lnleft(2cosfrac{x}{2}right)right)dx=$$$$=frac{pi}{2}ln(sqrt 2-1)+2text{Cl}_2left(frac{pi}{4}right)+2text{Cl}_2left(frac{3pi}{4}right)$$
The last two integrals can be found on the first link. Now is up to the reader if using Clausen function gives any satisfaction, because in desguise is still a series, but same goes with the trigamma function.



An interesting question might be: For what values of $phi$ does the following integral have an elementary answer (Catalan's constant included)?
$ displaystyle{I(phi)=int_0^phi frac{x}{sin x}dx}$. So far I only know about $Ileft(frac{pi}{6}right)$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    I would be happy with the 2 order two Clausen functions as an answer. Far more compact compared to the answer I gave in terms of 4 trigamma functions. And besides, are the elementary functions such as $e^x$ and $sin x$ not themselves just series in disguise?
    $endgroup$
    – omegadot
    Dec 21 '18 at 12:01










  • $begingroup$
    You are definetly right. In my mind, by elementary I reffer of something that is learnt in school (which maybe is not quite the best description of something elementary). Maybe Clausen and Trigamma function are studied somewhere, but I only heard of them from the internet.
    $endgroup$
    – Zacky
    Dec 21 '18 at 12:12








  • 1




    $begingroup$
    I love special functions. Thanks Zacky
    $endgroup$
    – clathratus
    Dec 21 '18 at 18:58






  • 1




    $begingroup$
    $Ileft(frac{pi}{2}right)=2G$ , $G$ is the Catalan constant.
    $endgroup$
    – FDP
    Dec 21 '18 at 20:48



















3












$begingroup$

Too long for comments.



$$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}=4 left(sqrt{2}-1right) ,
_3F_2left(frac{1}{2},frac{1}{2},1;frac{3}{2},frac{3}{2};2
sqrt{2}-3right)$$



On the other hand, working from Wolfram Alpha expression for the antiderivative and trying to simplify as much as I could the integral, I got
$$I=-frac{pi}{4} , log left(3+2 sqrt{2}right)+frac 1 {16 sqrt 2} left(psi ^{(1)}left(frac{1}{8}right)+psi ^{(1)}left(frac{3}{8}right)-psi
^{(1)}left(frac{5}{8}right)-psi ^{(1)}left(frac{7}{8}right) right)$$



What is interesting to mention is that, doing calculations with another CAS, intermediate steps show $G$ appearing a few times.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Yes $mathbf{G}$ does indeed appear twice before canceling out as can be seen in the answer I provide.
    $endgroup$
    – omegadot
    Dec 21 '18 at 10:58












  • $begingroup$
    @omegadot. Using another way, it did appear four times in complex expressions and ran away ! By the way, your answer is real nice ! $to +1$. Cheers.
    $endgroup$
    – Claude Leibovici
    Dec 21 '18 at 11:22










  • $begingroup$
    So does the closed form I found simplify to this?
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:02



















3












$begingroup$

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
I & equiv int_{-pi/4}^{pi/4}{x over sinpars{x}},dd x,
pars{~mbox{OP already shows that}
I = bbox[10px,#ffd]{!!!!! 4!int_{0}^{root{2} - 1}!!{arctanpars{x} over x},dd x}~}
end{align}




Then,
begin{align}
I & = bbox[10px,#ffd]{4int_{0}^{root{2} - 1}{arctanpars{x} over x},dd x} =
4,Imint_{0}^{root{2} - 1}{lnpars{1 + ic x} over x},dd x
\[5mm] &
stackrel{{large x = ic t} atop {large t = -ic x}}{=},,,
4,Imint_{0}^{-pars{root{2} - 1}ic}
{lnpars{1 - t} over t},dd t
\[5mm] & =
-4,Imint_{0}^{-pars{root{2} - 1}ic}
mrm{Li}_{2}'pars{t},dd t =
-4,Immrm{Li}_{2}pars{-bracks{root{2} - 1}ic}
\[5mm] & =
bbx{4,Immrm{Li}_{2}pars{bracks{root{2} - 1}ic}}
approx 1.6271
end{align}





share|cite|improve this answer











$endgroup$













  • $begingroup$
    Your final expression $Immrm{Li}_2([sqrt 2 - 1]i)$ is missing a factor of $-4$ infront otherwise it does not approx to $1.6271$.
    $endgroup$
    – mrtaurho
    Dec 21 '18 at 16:41








  • 1




    $begingroup$
    @mrtaurho Thanks. Indeed it's $displaystylecolor{red}{+}4$ because I already switched the $displaystylemathrm{Li}_{2} $ argument sign. Note that $displaystyleoverline{mathrm{Li}_{2}left(,{z},right)} = mathrm{Li}_{2}left(,{overline{z}},right)$.
    $endgroup$
    – Felix Marin
    Dec 21 '18 at 17:17










  • $begingroup$
    I appreciate the quick and easy approach. Thanks
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:03










  • $begingroup$
    @clathratus You're welcome !!!.
    $endgroup$
    – Felix Marin
    Dec 22 '18 at 16:22



















1












$begingroup$

begin{align}I&=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x\
&=2Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{pi/4}-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
&=frac{pi}{2}ln(sqrt{2}-1)-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
end{align}



In the latter integral perform the change of variable $y=dfrac{x}{2}$,



begin{align}I&=frac{pi}{2}ln(sqrt{2}-1)-4int_0^{pi/8}lnleft(tanleft(xright)right),dx\
&=frac{pi}{2}ln(sqrt{2}-1)-4Big[frac{1}{2}text{i}big(text{Li}_2(text{i}tan x)-text{Li}_2(-text{i}tan x)big)+xlnleft(tan xright)Big]_0^{pi/8}\
&=boxed{2text{i}left(text{Li}_2left(text{i}left(1-sqrt{2}right)right)-text{Li}_2left(text{i}left(sqrt{2}-1right)right)right)}
end{align}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048132%2fevaluate-int-pi-4-pi-4-fracx-sin-x-mathrmdx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    5 Answers
    5






    active

    oldest

    votes








    5 Answers
    5






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    Let
    $$I = int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = 2 int_0^{pi/4} x , text{cosec} , x , dx.$$
    After integrating by parts we have
    begin{align}
    I &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (text{cosec} , x + cot x) , dx\
    &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (1 + cos x) , dx - 2 int_0^{pi/4} ln (sin x) , dx.
    end{align}



    The second of these integrals is perhaps (?) reasonably well known (for an evaluation, see here). The result is:
    $$int_0^{pi/4} ln (sin x) , dx = -frac{1}{2} mathbf{G} - frac{pi}{4} ln 2,$$
    where $mathbf{G}$ is Catalan's constant. Thus



    $$I = -frac{pi}{2} ln (1 + sqrt{2}) + mathbf{G} + frac{pi}{2} ln 2 + 2I_1.$$



    For the first of the integrals we will make use of the following formula, a proof of which can be found here
    $$ln (1 + cos x) = 2 sum_{n = 1}^infty (-1)^{n + 1} frac{cos (nx)}{n} - ln 2.$$



    So
    begin{align}
    I_1 &= int_0^{pi/4} ln (1 + cos x) , dx\
    &= 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n} int_0^{pi/4} cos (nx) , dx - ln 2 int_0^{pi/4} dx\
    &= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
    &= -frac{pi}{4} ln 2 + 2 sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right ) + + 2 sum_{stackrel{{Large{n = 1}}}{n in text{even}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
    &= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2n - 1) right ] - frac{1}{2} sum_{n = 1}^infty frac{1}{n^2} sin left (frac{n pi}{2} right )\
    &= -frac{pi}{4} ln 2 + 2 S_1 - frac{1}{2} S_2.
    end{align}



    For the second of these sums,
    begin{align}
    S_2 &= sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{1}{n^2} sin left (frac{pi n}{2} right ) + sum_{stackrel{{Large{n = 1}}}{n in text{even}}} frac{1}{n^2} sin left (frac{pi n}{2} right )\
    &= sum_{n = 0}^infty frac{(-1)^n}{(2n + 1)^2}\
    &= mathbf{G},
    end{align}

    after a shift of the index $n mapsto 2n + 1$ in the odd sum has been made while the even sum is identically equal to zero.



    For the first of the sums, as it converges absolutely we can split it up as folows:
    $$S_1 = sum_{stackrel{{Large{n = 1}}}{n in 1,5,9,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 2,6,10,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 3,7,11,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 4,8,12,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ].$$



    Shifting the indices as follows: $n mapsto 4n - 3, n mapsto 4n - 2, n mapsto 4n - 1, n mapsto 4n$ leads to
    begin{align}
    S_1 &= frac{1}{sqrt{2}} left [sum_{n = 1}^infty frac{1}{(8n - 7)^2} + sum_{n = 1}^infty frac{1}{(8n - 5)^2} - sum_{n = 1}^infty frac{1}{(8n - 3)^2} - sum_{n = 1}^infty frac{1}{(8n - 1)^2} right ]\
    &= frac{1}{sqrt{2}} left [sum_{n = 0}^infty frac{1}{(8n + 1)^2} + sum_{n = 0}^infty frac{1}{(8n + 3)^2} - sum_{n = 0}^infty frac{1}{(8n + 5)^2} - sum_{n = 0}^infty frac{1}{(8n + 7)^2} right ]\
    &= frac{1}{64 sqrt{2}} left [sum_{n = 0}^infty frac{1}{(n + 1/8)^2} + sum_{n = 0}^infty frac{1}{(n + 3/8)^2} - sum_{n = 0}^infty frac{1}{(n + 5/8)^2} - sum_{n = 0}^infty frac{1}{(n + 7/8)^2} right ]\
    &= frac{1}{64 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],
    end{align}

    where we have made use of the series representation for the polygamma function of order one (as known as the trigamma function). So the value for $I_1$ is:
    $$I_1 = -frac{pi}{4} ln 2 - frac{1}{2} mathbf{G} + frac{1}{32 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],$$
    leading to a final result of
    $$int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = -frac{pi}{2} ln (1 + sqrt{2}) + frac{1}{16 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ].$$





    Converting the trigamma functions to Clausen functions of order two



    Inspired by the answer given by Zacky in terms of the Clausen function of order two, here I will show how to convert my answer in terms of the 4 trigamma functions into 2 Clausen functions of order 2.



    The relation between the Clausen function of order two and the trigamma function is given by (a proof of this can be found here)
    $$text{Cl}_2 left (frac{q pi}{p} right ) = frac{1}{(2p)^{2m} (2m - 1)!} sum_{n = 1}^p sin left (frac{qnpi}{p} right ) left [psi^{(1)} left (frac{n}{2p} right ) + (-1)^q psi^{(1)} left (frac{n + p}{2p} right ) right ].$$
    Setting $m = 1, q = 1, p = 4$ gives
    begin{align}
    text{Cl}_2 left (frac{pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } + psi^{(1)} left (frac{1}{4} right ) - psi^{(1)} left (frac{3}{4} right ) right.\
    & qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ], qquad (*)
    end{align}

    and setting $m = 1, q = 3, p = 4$ gives
    begin{align}
    text{Cl}_2 left (frac{3pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } - psi^{(1)} left (frac{1}{4} right ) + psi^{(1)} left (frac{3}{4} right ) right.\
    & qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ]. qquad (**)
    end{align}

    On adding ($*$) to ($**$) we see that
    $$psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) = 32 sqrt{2} left [text{Cl}_2 left (frac{pi}{4} right ) + text{Cl}_2 left (frac{3pi}{4} right ) right ],$$
    giving
    $$int_{-pi/4}^{pi/4} frac{x}{sin x} , dx = -frac{pi}{2} ln (1 + sqrt{2}) + 2 , text{Cl}_2 left (frac{pi}{4} right ) + 2 , text{Cl}_2 left (frac{3pi}{4} right ).$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Nice answer! We might be able to reduce those $4$ values of the trigamma function using: $$psi_1left(xright)+psi_1left(x+frac12right)=4psi_1left(2xright)$$ I mean: $$psi_1left(frac18right)+left(frac58right) = 4psi_1left(frac14right)$$ And same with: $$psi_1left(frac38right)+left(frac78right) = 4psi_1left(frac34right)$$ And the values of $psi_1left(frac14right)$ and $psi_1left(frac34right)$ are known from here: mathworld.wolfram.com/TrigammaFunction.html
      $endgroup$
      – Zacky
      Dec 21 '18 at 12:06












    • $begingroup$
      Perfect beautiful wonderful amazing thank you for a really great answer :)
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:04










    • $begingroup$
      Also: does the closed form I found simplify to the answer you give?
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:56
















    6












    $begingroup$

    Let
    $$I = int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = 2 int_0^{pi/4} x , text{cosec} , x , dx.$$
    After integrating by parts we have
    begin{align}
    I &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (text{cosec} , x + cot x) , dx\
    &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (1 + cos x) , dx - 2 int_0^{pi/4} ln (sin x) , dx.
    end{align}



    The second of these integrals is perhaps (?) reasonably well known (for an evaluation, see here). The result is:
    $$int_0^{pi/4} ln (sin x) , dx = -frac{1}{2} mathbf{G} - frac{pi}{4} ln 2,$$
    where $mathbf{G}$ is Catalan's constant. Thus



    $$I = -frac{pi}{2} ln (1 + sqrt{2}) + mathbf{G} + frac{pi}{2} ln 2 + 2I_1.$$



    For the first of the integrals we will make use of the following formula, a proof of which can be found here
    $$ln (1 + cos x) = 2 sum_{n = 1}^infty (-1)^{n + 1} frac{cos (nx)}{n} - ln 2.$$



    So
    begin{align}
    I_1 &= int_0^{pi/4} ln (1 + cos x) , dx\
    &= 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n} int_0^{pi/4} cos (nx) , dx - ln 2 int_0^{pi/4} dx\
    &= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
    &= -frac{pi}{4} ln 2 + 2 sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right ) + + 2 sum_{stackrel{{Large{n = 1}}}{n in text{even}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
    &= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2n - 1) right ] - frac{1}{2} sum_{n = 1}^infty frac{1}{n^2} sin left (frac{n pi}{2} right )\
    &= -frac{pi}{4} ln 2 + 2 S_1 - frac{1}{2} S_2.
    end{align}



    For the second of these sums,
    begin{align}
    S_2 &= sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{1}{n^2} sin left (frac{pi n}{2} right ) + sum_{stackrel{{Large{n = 1}}}{n in text{even}}} frac{1}{n^2} sin left (frac{pi n}{2} right )\
    &= sum_{n = 0}^infty frac{(-1)^n}{(2n + 1)^2}\
    &= mathbf{G},
    end{align}

    after a shift of the index $n mapsto 2n + 1$ in the odd sum has been made while the even sum is identically equal to zero.



    For the first of the sums, as it converges absolutely we can split it up as folows:
    $$S_1 = sum_{stackrel{{Large{n = 1}}}{n in 1,5,9,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 2,6,10,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 3,7,11,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 4,8,12,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ].$$



    Shifting the indices as follows: $n mapsto 4n - 3, n mapsto 4n - 2, n mapsto 4n - 1, n mapsto 4n$ leads to
    begin{align}
    S_1 &= frac{1}{sqrt{2}} left [sum_{n = 1}^infty frac{1}{(8n - 7)^2} + sum_{n = 1}^infty frac{1}{(8n - 5)^2} - sum_{n = 1}^infty frac{1}{(8n - 3)^2} - sum_{n = 1}^infty frac{1}{(8n - 1)^2} right ]\
    &= frac{1}{sqrt{2}} left [sum_{n = 0}^infty frac{1}{(8n + 1)^2} + sum_{n = 0}^infty frac{1}{(8n + 3)^2} - sum_{n = 0}^infty frac{1}{(8n + 5)^2} - sum_{n = 0}^infty frac{1}{(8n + 7)^2} right ]\
    &= frac{1}{64 sqrt{2}} left [sum_{n = 0}^infty frac{1}{(n + 1/8)^2} + sum_{n = 0}^infty frac{1}{(n + 3/8)^2} - sum_{n = 0}^infty frac{1}{(n + 5/8)^2} - sum_{n = 0}^infty frac{1}{(n + 7/8)^2} right ]\
    &= frac{1}{64 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],
    end{align}

    where we have made use of the series representation for the polygamma function of order one (as known as the trigamma function). So the value for $I_1$ is:
    $$I_1 = -frac{pi}{4} ln 2 - frac{1}{2} mathbf{G} + frac{1}{32 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],$$
    leading to a final result of
    $$int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = -frac{pi}{2} ln (1 + sqrt{2}) + frac{1}{16 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ].$$





    Converting the trigamma functions to Clausen functions of order two



    Inspired by the answer given by Zacky in terms of the Clausen function of order two, here I will show how to convert my answer in terms of the 4 trigamma functions into 2 Clausen functions of order 2.



    The relation between the Clausen function of order two and the trigamma function is given by (a proof of this can be found here)
    $$text{Cl}_2 left (frac{q pi}{p} right ) = frac{1}{(2p)^{2m} (2m - 1)!} sum_{n = 1}^p sin left (frac{qnpi}{p} right ) left [psi^{(1)} left (frac{n}{2p} right ) + (-1)^q psi^{(1)} left (frac{n + p}{2p} right ) right ].$$
    Setting $m = 1, q = 1, p = 4$ gives
    begin{align}
    text{Cl}_2 left (frac{pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } + psi^{(1)} left (frac{1}{4} right ) - psi^{(1)} left (frac{3}{4} right ) right.\
    & qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ], qquad (*)
    end{align}

    and setting $m = 1, q = 3, p = 4$ gives
    begin{align}
    text{Cl}_2 left (frac{3pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } - psi^{(1)} left (frac{1}{4} right ) + psi^{(1)} left (frac{3}{4} right ) right.\
    & qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ]. qquad (**)
    end{align}

    On adding ($*$) to ($**$) we see that
    $$psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) = 32 sqrt{2} left [text{Cl}_2 left (frac{pi}{4} right ) + text{Cl}_2 left (frac{3pi}{4} right ) right ],$$
    giving
    $$int_{-pi/4}^{pi/4} frac{x}{sin x} , dx = -frac{pi}{2} ln (1 + sqrt{2}) + 2 , text{Cl}_2 left (frac{pi}{4} right ) + 2 , text{Cl}_2 left (frac{3pi}{4} right ).$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Nice answer! We might be able to reduce those $4$ values of the trigamma function using: $$psi_1left(xright)+psi_1left(x+frac12right)=4psi_1left(2xright)$$ I mean: $$psi_1left(frac18right)+left(frac58right) = 4psi_1left(frac14right)$$ And same with: $$psi_1left(frac38right)+left(frac78right) = 4psi_1left(frac34right)$$ And the values of $psi_1left(frac14right)$ and $psi_1left(frac34right)$ are known from here: mathworld.wolfram.com/TrigammaFunction.html
      $endgroup$
      – Zacky
      Dec 21 '18 at 12:06












    • $begingroup$
      Perfect beautiful wonderful amazing thank you for a really great answer :)
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:04










    • $begingroup$
      Also: does the closed form I found simplify to the answer you give?
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:56














    6












    6








    6





    $begingroup$

    Let
    $$I = int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = 2 int_0^{pi/4} x , text{cosec} , x , dx.$$
    After integrating by parts we have
    begin{align}
    I &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (text{cosec} , x + cot x) , dx\
    &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (1 + cos x) , dx - 2 int_0^{pi/4} ln (sin x) , dx.
    end{align}



    The second of these integrals is perhaps (?) reasonably well known (for an evaluation, see here). The result is:
    $$int_0^{pi/4} ln (sin x) , dx = -frac{1}{2} mathbf{G} - frac{pi}{4} ln 2,$$
    where $mathbf{G}$ is Catalan's constant. Thus



    $$I = -frac{pi}{2} ln (1 + sqrt{2}) + mathbf{G} + frac{pi}{2} ln 2 + 2I_1.$$



    For the first of the integrals we will make use of the following formula, a proof of which can be found here
    $$ln (1 + cos x) = 2 sum_{n = 1}^infty (-1)^{n + 1} frac{cos (nx)}{n} - ln 2.$$



    So
    begin{align}
    I_1 &= int_0^{pi/4} ln (1 + cos x) , dx\
    &= 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n} int_0^{pi/4} cos (nx) , dx - ln 2 int_0^{pi/4} dx\
    &= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
    &= -frac{pi}{4} ln 2 + 2 sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right ) + + 2 sum_{stackrel{{Large{n = 1}}}{n in text{even}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
    &= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2n - 1) right ] - frac{1}{2} sum_{n = 1}^infty frac{1}{n^2} sin left (frac{n pi}{2} right )\
    &= -frac{pi}{4} ln 2 + 2 S_1 - frac{1}{2} S_2.
    end{align}



    For the second of these sums,
    begin{align}
    S_2 &= sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{1}{n^2} sin left (frac{pi n}{2} right ) + sum_{stackrel{{Large{n = 1}}}{n in text{even}}} frac{1}{n^2} sin left (frac{pi n}{2} right )\
    &= sum_{n = 0}^infty frac{(-1)^n}{(2n + 1)^2}\
    &= mathbf{G},
    end{align}

    after a shift of the index $n mapsto 2n + 1$ in the odd sum has been made while the even sum is identically equal to zero.



    For the first of the sums, as it converges absolutely we can split it up as folows:
    $$S_1 = sum_{stackrel{{Large{n = 1}}}{n in 1,5,9,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 2,6,10,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 3,7,11,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 4,8,12,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ].$$



    Shifting the indices as follows: $n mapsto 4n - 3, n mapsto 4n - 2, n mapsto 4n - 1, n mapsto 4n$ leads to
    begin{align}
    S_1 &= frac{1}{sqrt{2}} left [sum_{n = 1}^infty frac{1}{(8n - 7)^2} + sum_{n = 1}^infty frac{1}{(8n - 5)^2} - sum_{n = 1}^infty frac{1}{(8n - 3)^2} - sum_{n = 1}^infty frac{1}{(8n - 1)^2} right ]\
    &= frac{1}{sqrt{2}} left [sum_{n = 0}^infty frac{1}{(8n + 1)^2} + sum_{n = 0}^infty frac{1}{(8n + 3)^2} - sum_{n = 0}^infty frac{1}{(8n + 5)^2} - sum_{n = 0}^infty frac{1}{(8n + 7)^2} right ]\
    &= frac{1}{64 sqrt{2}} left [sum_{n = 0}^infty frac{1}{(n + 1/8)^2} + sum_{n = 0}^infty frac{1}{(n + 3/8)^2} - sum_{n = 0}^infty frac{1}{(n + 5/8)^2} - sum_{n = 0}^infty frac{1}{(n + 7/8)^2} right ]\
    &= frac{1}{64 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],
    end{align}

    where we have made use of the series representation for the polygamma function of order one (as known as the trigamma function). So the value for $I_1$ is:
    $$I_1 = -frac{pi}{4} ln 2 - frac{1}{2} mathbf{G} + frac{1}{32 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],$$
    leading to a final result of
    $$int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = -frac{pi}{2} ln (1 + sqrt{2}) + frac{1}{16 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ].$$





    Converting the trigamma functions to Clausen functions of order two



    Inspired by the answer given by Zacky in terms of the Clausen function of order two, here I will show how to convert my answer in terms of the 4 trigamma functions into 2 Clausen functions of order 2.



    The relation between the Clausen function of order two and the trigamma function is given by (a proof of this can be found here)
    $$text{Cl}_2 left (frac{q pi}{p} right ) = frac{1}{(2p)^{2m} (2m - 1)!} sum_{n = 1}^p sin left (frac{qnpi}{p} right ) left [psi^{(1)} left (frac{n}{2p} right ) + (-1)^q psi^{(1)} left (frac{n + p}{2p} right ) right ].$$
    Setting $m = 1, q = 1, p = 4$ gives
    begin{align}
    text{Cl}_2 left (frac{pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } + psi^{(1)} left (frac{1}{4} right ) - psi^{(1)} left (frac{3}{4} right ) right.\
    & qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ], qquad (*)
    end{align}

    and setting $m = 1, q = 3, p = 4$ gives
    begin{align}
    text{Cl}_2 left (frac{3pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } - psi^{(1)} left (frac{1}{4} right ) + psi^{(1)} left (frac{3}{4} right ) right.\
    & qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ]. qquad (**)
    end{align}

    On adding ($*$) to ($**$) we see that
    $$psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) = 32 sqrt{2} left [text{Cl}_2 left (frac{pi}{4} right ) + text{Cl}_2 left (frac{3pi}{4} right ) right ],$$
    giving
    $$int_{-pi/4}^{pi/4} frac{x}{sin x} , dx = -frac{pi}{2} ln (1 + sqrt{2}) + 2 , text{Cl}_2 left (frac{pi}{4} right ) + 2 , text{Cl}_2 left (frac{3pi}{4} right ).$$






    share|cite|improve this answer











    $endgroup$



    Let
    $$I = int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = 2 int_0^{pi/4} x , text{cosec} , x , dx.$$
    After integrating by parts we have
    begin{align}
    I &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (text{cosec} , x + cot x) , dx\
    &= -frac{pi}{2} ln (1 + sqrt{2}) + 2 int_0^{pi/4} ln (1 + cos x) , dx - 2 int_0^{pi/4} ln (sin x) , dx.
    end{align}



    The second of these integrals is perhaps (?) reasonably well known (for an evaluation, see here). The result is:
    $$int_0^{pi/4} ln (sin x) , dx = -frac{1}{2} mathbf{G} - frac{pi}{4} ln 2,$$
    where $mathbf{G}$ is Catalan's constant. Thus



    $$I = -frac{pi}{2} ln (1 + sqrt{2}) + mathbf{G} + frac{pi}{2} ln 2 + 2I_1.$$



    For the first of the integrals we will make use of the following formula, a proof of which can be found here
    $$ln (1 + cos x) = 2 sum_{n = 1}^infty (-1)^{n + 1} frac{cos (nx)}{n} - ln 2.$$



    So
    begin{align}
    I_1 &= int_0^{pi/4} ln (1 + cos x) , dx\
    &= 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n} int_0^{pi/4} cos (nx) , dx - ln 2 int_0^{pi/4} dx\
    &= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
    &= -frac{pi}{4} ln 2 + 2 sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right ) + + 2 sum_{stackrel{{Large{n = 1}}}{n in text{even}}}^infty frac{(-1)^{n + 1}}{n^2} sin left (frac{n pi}{4} right )\
    &= -frac{pi}{4} ln 2 + 2 sum_{n = 1}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2n - 1) right ] - frac{1}{2} sum_{n = 1}^infty frac{1}{n^2} sin left (frac{n pi}{2} right )\
    &= -frac{pi}{4} ln 2 + 2 S_1 - frac{1}{2} S_2.
    end{align}



    For the second of these sums,
    begin{align}
    S_2 &= sum_{stackrel{{Large{n = 1}}}{n in text{odd}}}^infty frac{1}{n^2} sin left (frac{pi n}{2} right ) + sum_{stackrel{{Large{n = 1}}}{n in text{even}}} frac{1}{n^2} sin left (frac{pi n}{2} right )\
    &= sum_{n = 0}^infty frac{(-1)^n}{(2n + 1)^2}\
    &= mathbf{G},
    end{align}

    after a shift of the index $n mapsto 2n + 1$ in the odd sum has been made while the even sum is identically equal to zero.



    For the first of the sums, as it converges absolutely we can split it up as folows:
    $$S_1 = sum_{stackrel{{Large{n = 1}}}{n in 1,5,9,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 2,6,10,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 3,7,11,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ] + sum_{stackrel{{Large{n = 1}}}{n in 4,8,12,ldots}}^infty frac{1}{(2n - 1)^2} sin left [frac{pi}{4} (2k - 1) right ].$$



    Shifting the indices as follows: $n mapsto 4n - 3, n mapsto 4n - 2, n mapsto 4n - 1, n mapsto 4n$ leads to
    begin{align}
    S_1 &= frac{1}{sqrt{2}} left [sum_{n = 1}^infty frac{1}{(8n - 7)^2} + sum_{n = 1}^infty frac{1}{(8n - 5)^2} - sum_{n = 1}^infty frac{1}{(8n - 3)^2} - sum_{n = 1}^infty frac{1}{(8n - 1)^2} right ]\
    &= frac{1}{sqrt{2}} left [sum_{n = 0}^infty frac{1}{(8n + 1)^2} + sum_{n = 0}^infty frac{1}{(8n + 3)^2} - sum_{n = 0}^infty frac{1}{(8n + 5)^2} - sum_{n = 0}^infty frac{1}{(8n + 7)^2} right ]\
    &= frac{1}{64 sqrt{2}} left [sum_{n = 0}^infty frac{1}{(n + 1/8)^2} + sum_{n = 0}^infty frac{1}{(n + 3/8)^2} - sum_{n = 0}^infty frac{1}{(n + 5/8)^2} - sum_{n = 0}^infty frac{1}{(n + 7/8)^2} right ]\
    &= frac{1}{64 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],
    end{align}

    where we have made use of the series representation for the polygamma function of order one (as known as the trigamma function). So the value for $I_1$ is:
    $$I_1 = -frac{pi}{4} ln 2 - frac{1}{2} mathbf{G} + frac{1}{32 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ],$$
    leading to a final result of
    $$int_{-pi/4}^{pi/4} x , text{cosec} , x , dx = -frac{pi}{2} ln (1 + sqrt{2}) + frac{1}{16 sqrt{2}} left [psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right ].$$





    Converting the trigamma functions to Clausen functions of order two



    Inspired by the answer given by Zacky in terms of the Clausen function of order two, here I will show how to convert my answer in terms of the 4 trigamma functions into 2 Clausen functions of order 2.



    The relation between the Clausen function of order two and the trigamma function is given by (a proof of this can be found here)
    $$text{Cl}_2 left (frac{q pi}{p} right ) = frac{1}{(2p)^{2m} (2m - 1)!} sum_{n = 1}^p sin left (frac{qnpi}{p} right ) left [psi^{(1)} left (frac{n}{2p} right ) + (-1)^q psi^{(1)} left (frac{n + p}{2p} right ) right ].$$
    Setting $m = 1, q = 1, p = 4$ gives
    begin{align}
    text{Cl}_2 left (frac{pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } + psi^{(1)} left (frac{1}{4} right ) - psi^{(1)} left (frac{3}{4} right ) right.\
    & qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ], qquad (*)
    end{align}

    and setting $m = 1, q = 3, p = 4$ gives
    begin{align}
    text{Cl}_2 left (frac{3pi}{4} right ) &= frac{1}{64} left [frac{1}{sqrt{2}} left {psi^{(1)} left (frac{1}{8} right ) - psi^{(1)} left (frac{5}{8} right ) right } - psi^{(1)} left (frac{1}{4} right ) + psi^{(1)} left (frac{3}{4} right ) right.\
    & qquad left. + frac{1}{sqrt{2}} left {psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{7}{8} right ) right } right ]. qquad (**)
    end{align}

    On adding ($*$) to ($**$) we see that
    $$psi^{(1)} left (frac{1}{8} right ) + psi^{(1)} left (frac{3}{8} right ) - psi^{(1)} left (frac{5}{8} right ) - psi^{(1)} left (frac{7}{8} right ) = 32 sqrt{2} left [text{Cl}_2 left (frac{pi}{4} right ) + text{Cl}_2 left (frac{3pi}{4} right ) right ],$$
    giving
    $$int_{-pi/4}^{pi/4} frac{x}{sin x} , dx = -frac{pi}{2} ln (1 + sqrt{2}) + 2 , text{Cl}_2 left (frac{pi}{4} right ) + 2 , text{Cl}_2 left (frac{3pi}{4} right ).$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 22 '18 at 10:13

























    answered Dec 21 '18 at 10:45









    omegadotomegadot

    6,4592829




    6,4592829












    • $begingroup$
      Nice answer! We might be able to reduce those $4$ values of the trigamma function using: $$psi_1left(xright)+psi_1left(x+frac12right)=4psi_1left(2xright)$$ I mean: $$psi_1left(frac18right)+left(frac58right) = 4psi_1left(frac14right)$$ And same with: $$psi_1left(frac38right)+left(frac78right) = 4psi_1left(frac34right)$$ And the values of $psi_1left(frac14right)$ and $psi_1left(frac34right)$ are known from here: mathworld.wolfram.com/TrigammaFunction.html
      $endgroup$
      – Zacky
      Dec 21 '18 at 12:06












    • $begingroup$
      Perfect beautiful wonderful amazing thank you for a really great answer :)
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:04










    • $begingroup$
      Also: does the closed form I found simplify to the answer you give?
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:56


















    • $begingroup$
      Nice answer! We might be able to reduce those $4$ values of the trigamma function using: $$psi_1left(xright)+psi_1left(x+frac12right)=4psi_1left(2xright)$$ I mean: $$psi_1left(frac18right)+left(frac58right) = 4psi_1left(frac14right)$$ And same with: $$psi_1left(frac38right)+left(frac78right) = 4psi_1left(frac34right)$$ And the values of $psi_1left(frac14right)$ and $psi_1left(frac34right)$ are known from here: mathworld.wolfram.com/TrigammaFunction.html
      $endgroup$
      – Zacky
      Dec 21 '18 at 12:06












    • $begingroup$
      Perfect beautiful wonderful amazing thank you for a really great answer :)
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:04










    • $begingroup$
      Also: does the closed form I found simplify to the answer you give?
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:56
















    $begingroup$
    Nice answer! We might be able to reduce those $4$ values of the trigamma function using: $$psi_1left(xright)+psi_1left(x+frac12right)=4psi_1left(2xright)$$ I mean: $$psi_1left(frac18right)+left(frac58right) = 4psi_1left(frac14right)$$ And same with: $$psi_1left(frac38right)+left(frac78right) = 4psi_1left(frac34right)$$ And the values of $psi_1left(frac14right)$ and $psi_1left(frac34right)$ are known from here: mathworld.wolfram.com/TrigammaFunction.html
    $endgroup$
    – Zacky
    Dec 21 '18 at 12:06






    $begingroup$
    Nice answer! We might be able to reduce those $4$ values of the trigamma function using: $$psi_1left(xright)+psi_1left(x+frac12right)=4psi_1left(2xright)$$ I mean: $$psi_1left(frac18right)+left(frac58right) = 4psi_1left(frac14right)$$ And same with: $$psi_1left(frac38right)+left(frac78right) = 4psi_1left(frac34right)$$ And the values of $psi_1left(frac14right)$ and $psi_1left(frac34right)$ are known from here: mathworld.wolfram.com/TrigammaFunction.html
    $endgroup$
    – Zacky
    Dec 21 '18 at 12:06














    $begingroup$
    Perfect beautiful wonderful amazing thank you for a really great answer :)
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:04




    $begingroup$
    Perfect beautiful wonderful amazing thank you for a really great answer :)
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:04












    $begingroup$
    Also: does the closed form I found simplify to the answer you give?
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:56




    $begingroup$
    Also: does the closed form I found simplify to the answer you give?
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:56











    4












    $begingroup$

    For the purpose of an alternative method, mostly relying on Clausen function. We have:
    $$I=int_{-pi/4}^{pi/4}frac{x}{sin x} dx=2int_0^{pi/4}xleft(lnleft(tanfrac{x}{2}right)right)' dx=2xlnleft(tanfrac{x}{2}right)bigg|_0^frac{pi}{4}-2int_0^frac{pi}{4}lnleft(tanfrac{x}{2}right)dx=$$
    $$=frac{pi}{2}ln(sqrt 2-1)-2int_0^frac{pi}{4}left(lnleft(2sinfrac{x}{2}right)-lnleft(2cosfrac{x}{2}right)right)dx=$$$$=frac{pi}{2}ln(sqrt 2-1)+2text{Cl}_2left(frac{pi}{4}right)+2text{Cl}_2left(frac{3pi}{4}right)$$
    The last two integrals can be found on the first link. Now is up to the reader if using Clausen function gives any satisfaction, because in desguise is still a series, but same goes with the trigamma function.



    An interesting question might be: For what values of $phi$ does the following integral have an elementary answer (Catalan's constant included)?
    $ displaystyle{I(phi)=int_0^phi frac{x}{sin x}dx}$. So far I only know about $Ileft(frac{pi}{6}right)$.






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      I would be happy with the 2 order two Clausen functions as an answer. Far more compact compared to the answer I gave in terms of 4 trigamma functions. And besides, are the elementary functions such as $e^x$ and $sin x$ not themselves just series in disguise?
      $endgroup$
      – omegadot
      Dec 21 '18 at 12:01










    • $begingroup$
      You are definetly right. In my mind, by elementary I reffer of something that is learnt in school (which maybe is not quite the best description of something elementary). Maybe Clausen and Trigamma function are studied somewhere, but I only heard of them from the internet.
      $endgroup$
      – Zacky
      Dec 21 '18 at 12:12








    • 1




      $begingroup$
      I love special functions. Thanks Zacky
      $endgroup$
      – clathratus
      Dec 21 '18 at 18:58






    • 1




      $begingroup$
      $Ileft(frac{pi}{2}right)=2G$ , $G$ is the Catalan constant.
      $endgroup$
      – FDP
      Dec 21 '18 at 20:48
















    4












    $begingroup$

    For the purpose of an alternative method, mostly relying on Clausen function. We have:
    $$I=int_{-pi/4}^{pi/4}frac{x}{sin x} dx=2int_0^{pi/4}xleft(lnleft(tanfrac{x}{2}right)right)' dx=2xlnleft(tanfrac{x}{2}right)bigg|_0^frac{pi}{4}-2int_0^frac{pi}{4}lnleft(tanfrac{x}{2}right)dx=$$
    $$=frac{pi}{2}ln(sqrt 2-1)-2int_0^frac{pi}{4}left(lnleft(2sinfrac{x}{2}right)-lnleft(2cosfrac{x}{2}right)right)dx=$$$$=frac{pi}{2}ln(sqrt 2-1)+2text{Cl}_2left(frac{pi}{4}right)+2text{Cl}_2left(frac{3pi}{4}right)$$
    The last two integrals can be found on the first link. Now is up to the reader if using Clausen function gives any satisfaction, because in desguise is still a series, but same goes with the trigamma function.



    An interesting question might be: For what values of $phi$ does the following integral have an elementary answer (Catalan's constant included)?
    $ displaystyle{I(phi)=int_0^phi frac{x}{sin x}dx}$. So far I only know about $Ileft(frac{pi}{6}right)$.






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      I would be happy with the 2 order two Clausen functions as an answer. Far more compact compared to the answer I gave in terms of 4 trigamma functions. And besides, are the elementary functions such as $e^x$ and $sin x$ not themselves just series in disguise?
      $endgroup$
      – omegadot
      Dec 21 '18 at 12:01










    • $begingroup$
      You are definetly right. In my mind, by elementary I reffer of something that is learnt in school (which maybe is not quite the best description of something elementary). Maybe Clausen and Trigamma function are studied somewhere, but I only heard of them from the internet.
      $endgroup$
      – Zacky
      Dec 21 '18 at 12:12








    • 1




      $begingroup$
      I love special functions. Thanks Zacky
      $endgroup$
      – clathratus
      Dec 21 '18 at 18:58






    • 1




      $begingroup$
      $Ileft(frac{pi}{2}right)=2G$ , $G$ is the Catalan constant.
      $endgroup$
      – FDP
      Dec 21 '18 at 20:48














    4












    4








    4





    $begingroup$

    For the purpose of an alternative method, mostly relying on Clausen function. We have:
    $$I=int_{-pi/4}^{pi/4}frac{x}{sin x} dx=2int_0^{pi/4}xleft(lnleft(tanfrac{x}{2}right)right)' dx=2xlnleft(tanfrac{x}{2}right)bigg|_0^frac{pi}{4}-2int_0^frac{pi}{4}lnleft(tanfrac{x}{2}right)dx=$$
    $$=frac{pi}{2}ln(sqrt 2-1)-2int_0^frac{pi}{4}left(lnleft(2sinfrac{x}{2}right)-lnleft(2cosfrac{x}{2}right)right)dx=$$$$=frac{pi}{2}ln(sqrt 2-1)+2text{Cl}_2left(frac{pi}{4}right)+2text{Cl}_2left(frac{3pi}{4}right)$$
    The last two integrals can be found on the first link. Now is up to the reader if using Clausen function gives any satisfaction, because in desguise is still a series, but same goes with the trigamma function.



    An interesting question might be: For what values of $phi$ does the following integral have an elementary answer (Catalan's constant included)?
    $ displaystyle{I(phi)=int_0^phi frac{x}{sin x}dx}$. So far I only know about $Ileft(frac{pi}{6}right)$.






    share|cite|improve this answer











    $endgroup$



    For the purpose of an alternative method, mostly relying on Clausen function. We have:
    $$I=int_{-pi/4}^{pi/4}frac{x}{sin x} dx=2int_0^{pi/4}xleft(lnleft(tanfrac{x}{2}right)right)' dx=2xlnleft(tanfrac{x}{2}right)bigg|_0^frac{pi}{4}-2int_0^frac{pi}{4}lnleft(tanfrac{x}{2}right)dx=$$
    $$=frac{pi}{2}ln(sqrt 2-1)-2int_0^frac{pi}{4}left(lnleft(2sinfrac{x}{2}right)-lnleft(2cosfrac{x}{2}right)right)dx=$$$$=frac{pi}{2}ln(sqrt 2-1)+2text{Cl}_2left(frac{pi}{4}right)+2text{Cl}_2left(frac{3pi}{4}right)$$
    The last two integrals can be found on the first link. Now is up to the reader if using Clausen function gives any satisfaction, because in desguise is still a series, but same goes with the trigamma function.



    An interesting question might be: For what values of $phi$ does the following integral have an elementary answer (Catalan's constant included)?
    $ displaystyle{I(phi)=int_0^phi frac{x}{sin x}dx}$. So far I only know about $Ileft(frac{pi}{6}right)$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 21 '18 at 11:57

























    answered Dec 21 '18 at 11:46









    ZackyZacky

    7,88511061




    7,88511061








    • 1




      $begingroup$
      I would be happy with the 2 order two Clausen functions as an answer. Far more compact compared to the answer I gave in terms of 4 trigamma functions. And besides, are the elementary functions such as $e^x$ and $sin x$ not themselves just series in disguise?
      $endgroup$
      – omegadot
      Dec 21 '18 at 12:01










    • $begingroup$
      You are definetly right. In my mind, by elementary I reffer of something that is learnt in school (which maybe is not quite the best description of something elementary). Maybe Clausen and Trigamma function are studied somewhere, but I only heard of them from the internet.
      $endgroup$
      – Zacky
      Dec 21 '18 at 12:12








    • 1




      $begingroup$
      I love special functions. Thanks Zacky
      $endgroup$
      – clathratus
      Dec 21 '18 at 18:58






    • 1




      $begingroup$
      $Ileft(frac{pi}{2}right)=2G$ , $G$ is the Catalan constant.
      $endgroup$
      – FDP
      Dec 21 '18 at 20:48














    • 1




      $begingroup$
      I would be happy with the 2 order two Clausen functions as an answer. Far more compact compared to the answer I gave in terms of 4 trigamma functions. And besides, are the elementary functions such as $e^x$ and $sin x$ not themselves just series in disguise?
      $endgroup$
      – omegadot
      Dec 21 '18 at 12:01










    • $begingroup$
      You are definetly right. In my mind, by elementary I reffer of something that is learnt in school (which maybe is not quite the best description of something elementary). Maybe Clausen and Trigamma function are studied somewhere, but I only heard of them from the internet.
      $endgroup$
      – Zacky
      Dec 21 '18 at 12:12








    • 1




      $begingroup$
      I love special functions. Thanks Zacky
      $endgroup$
      – clathratus
      Dec 21 '18 at 18:58






    • 1




      $begingroup$
      $Ileft(frac{pi}{2}right)=2G$ , $G$ is the Catalan constant.
      $endgroup$
      – FDP
      Dec 21 '18 at 20:48








    1




    1




    $begingroup$
    I would be happy with the 2 order two Clausen functions as an answer. Far more compact compared to the answer I gave in terms of 4 trigamma functions. And besides, are the elementary functions such as $e^x$ and $sin x$ not themselves just series in disguise?
    $endgroup$
    – omegadot
    Dec 21 '18 at 12:01




    $begingroup$
    I would be happy with the 2 order two Clausen functions as an answer. Far more compact compared to the answer I gave in terms of 4 trigamma functions. And besides, are the elementary functions such as $e^x$ and $sin x$ not themselves just series in disguise?
    $endgroup$
    – omegadot
    Dec 21 '18 at 12:01












    $begingroup$
    You are definetly right. In my mind, by elementary I reffer of something that is learnt in school (which maybe is not quite the best description of something elementary). Maybe Clausen and Trigamma function are studied somewhere, but I only heard of them from the internet.
    $endgroup$
    – Zacky
    Dec 21 '18 at 12:12






    $begingroup$
    You are definetly right. In my mind, by elementary I reffer of something that is learnt in school (which maybe is not quite the best description of something elementary). Maybe Clausen and Trigamma function are studied somewhere, but I only heard of them from the internet.
    $endgroup$
    – Zacky
    Dec 21 '18 at 12:12






    1




    1




    $begingroup$
    I love special functions. Thanks Zacky
    $endgroup$
    – clathratus
    Dec 21 '18 at 18:58




    $begingroup$
    I love special functions. Thanks Zacky
    $endgroup$
    – clathratus
    Dec 21 '18 at 18:58




    1




    1




    $begingroup$
    $Ileft(frac{pi}{2}right)=2G$ , $G$ is the Catalan constant.
    $endgroup$
    – FDP
    Dec 21 '18 at 20:48




    $begingroup$
    $Ileft(frac{pi}{2}right)=2G$ , $G$ is the Catalan constant.
    $endgroup$
    – FDP
    Dec 21 '18 at 20:48











    3












    $begingroup$

    Too long for comments.



    $$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}=4 left(sqrt{2}-1right) ,
    _3F_2left(frac{1}{2},frac{1}{2},1;frac{3}{2},frac{3}{2};2
    sqrt{2}-3right)$$



    On the other hand, working from Wolfram Alpha expression for the antiderivative and trying to simplify as much as I could the integral, I got
    $$I=-frac{pi}{4} , log left(3+2 sqrt{2}right)+frac 1 {16 sqrt 2} left(psi ^{(1)}left(frac{1}{8}right)+psi ^{(1)}left(frac{3}{8}right)-psi
    ^{(1)}left(frac{5}{8}right)-psi ^{(1)}left(frac{7}{8}right) right)$$



    What is interesting to mention is that, doing calculations with another CAS, intermediate steps show $G$ appearing a few times.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Yes $mathbf{G}$ does indeed appear twice before canceling out as can be seen in the answer I provide.
      $endgroup$
      – omegadot
      Dec 21 '18 at 10:58












    • $begingroup$
      @omegadot. Using another way, it did appear four times in complex expressions and ran away ! By the way, your answer is real nice ! $to +1$. Cheers.
      $endgroup$
      – Claude Leibovici
      Dec 21 '18 at 11:22










    • $begingroup$
      So does the closed form I found simplify to this?
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:02
















    3












    $begingroup$

    Too long for comments.



    $$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}=4 left(sqrt{2}-1right) ,
    _3F_2left(frac{1}{2},frac{1}{2},1;frac{3}{2},frac{3}{2};2
    sqrt{2}-3right)$$



    On the other hand, working from Wolfram Alpha expression for the antiderivative and trying to simplify as much as I could the integral, I got
    $$I=-frac{pi}{4} , log left(3+2 sqrt{2}right)+frac 1 {16 sqrt 2} left(psi ^{(1)}left(frac{1}{8}right)+psi ^{(1)}left(frac{3}{8}right)-psi
    ^{(1)}left(frac{5}{8}right)-psi ^{(1)}left(frac{7}{8}right) right)$$



    What is interesting to mention is that, doing calculations with another CAS, intermediate steps show $G$ appearing a few times.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Yes $mathbf{G}$ does indeed appear twice before canceling out as can be seen in the answer I provide.
      $endgroup$
      – omegadot
      Dec 21 '18 at 10:58












    • $begingroup$
      @omegadot. Using another way, it did appear four times in complex expressions and ran away ! By the way, your answer is real nice ! $to +1$. Cheers.
      $endgroup$
      – Claude Leibovici
      Dec 21 '18 at 11:22










    • $begingroup$
      So does the closed form I found simplify to this?
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:02














    3












    3








    3





    $begingroup$

    Too long for comments.



    $$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}=4 left(sqrt{2}-1right) ,
    _3F_2left(frac{1}{2},frac{1}{2},1;frac{3}{2},frac{3}{2};2
    sqrt{2}-3right)$$



    On the other hand, working from Wolfram Alpha expression for the antiderivative and trying to simplify as much as I could the integral, I got
    $$I=-frac{pi}{4} , log left(3+2 sqrt{2}right)+frac 1 {16 sqrt 2} left(psi ^{(1)}left(frac{1}{8}right)+psi ^{(1)}left(frac{3}{8}right)-psi
    ^{(1)}left(frac{5}{8}right)-psi ^{(1)}left(frac{7}{8}right) right)$$



    What is interesting to mention is that, doing calculations with another CAS, intermediate steps show $G$ appearing a few times.






    share|cite|improve this answer











    $endgroup$



    Too long for comments.



    $$I=4sum_{ngeq0}frac{(-1)^n}{(2n+1)^2}(sqrt{2}-1)^{2n+1}=4 left(sqrt{2}-1right) ,
    _3F_2left(frac{1}{2},frac{1}{2},1;frac{3}{2},frac{3}{2};2
    sqrt{2}-3right)$$



    On the other hand, working from Wolfram Alpha expression for the antiderivative and trying to simplify as much as I could the integral, I got
    $$I=-frac{pi}{4} , log left(3+2 sqrt{2}right)+frac 1 {16 sqrt 2} left(psi ^{(1)}left(frac{1}{8}right)+psi ^{(1)}left(frac{3}{8}right)-psi
    ^{(1)}left(frac{5}{8}right)-psi ^{(1)}left(frac{7}{8}right) right)$$



    What is interesting to mention is that, doing calculations with another CAS, intermediate steps show $G$ appearing a few times.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 21 '18 at 7:02

























    answered Dec 21 '18 at 6:49









    Claude LeiboviciClaude Leibovici

    125k1158135




    125k1158135












    • $begingroup$
      Yes $mathbf{G}$ does indeed appear twice before canceling out as can be seen in the answer I provide.
      $endgroup$
      – omegadot
      Dec 21 '18 at 10:58












    • $begingroup$
      @omegadot. Using another way, it did appear four times in complex expressions and ran away ! By the way, your answer is real nice ! $to +1$. Cheers.
      $endgroup$
      – Claude Leibovici
      Dec 21 '18 at 11:22










    • $begingroup$
      So does the closed form I found simplify to this?
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:02


















    • $begingroup$
      Yes $mathbf{G}$ does indeed appear twice before canceling out as can be seen in the answer I provide.
      $endgroup$
      – omegadot
      Dec 21 '18 at 10:58












    • $begingroup$
      @omegadot. Using another way, it did appear four times in complex expressions and ran away ! By the way, your answer is real nice ! $to +1$. Cheers.
      $endgroup$
      – Claude Leibovici
      Dec 21 '18 at 11:22










    • $begingroup$
      So does the closed form I found simplify to this?
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:02
















    $begingroup$
    Yes $mathbf{G}$ does indeed appear twice before canceling out as can be seen in the answer I provide.
    $endgroup$
    – omegadot
    Dec 21 '18 at 10:58






    $begingroup$
    Yes $mathbf{G}$ does indeed appear twice before canceling out as can be seen in the answer I provide.
    $endgroup$
    – omegadot
    Dec 21 '18 at 10:58














    $begingroup$
    @omegadot. Using another way, it did appear four times in complex expressions and ran away ! By the way, your answer is real nice ! $to +1$. Cheers.
    $endgroup$
    – Claude Leibovici
    Dec 21 '18 at 11:22




    $begingroup$
    @omegadot. Using another way, it did appear four times in complex expressions and ran away ! By the way, your answer is real nice ! $to +1$. Cheers.
    $endgroup$
    – Claude Leibovici
    Dec 21 '18 at 11:22












    $begingroup$
    So does the closed form I found simplify to this?
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:02




    $begingroup$
    So does the closed form I found simplify to this?
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:02











    3












    $begingroup$

    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$

    begin{align}
    I & equiv int_{-pi/4}^{pi/4}{x over sinpars{x}},dd x,
    pars{~mbox{OP already shows that}
    I = bbox[10px,#ffd]{!!!!! 4!int_{0}^{root{2} - 1}!!{arctanpars{x} over x},dd x}~}
    end{align}




    Then,
    begin{align}
    I & = bbox[10px,#ffd]{4int_{0}^{root{2} - 1}{arctanpars{x} over x},dd x} =
    4,Imint_{0}^{root{2} - 1}{lnpars{1 + ic x} over x},dd x
    \[5mm] &
    stackrel{{large x = ic t} atop {large t = -ic x}}{=},,,
    4,Imint_{0}^{-pars{root{2} - 1}ic}
    {lnpars{1 - t} over t},dd t
    \[5mm] & =
    -4,Imint_{0}^{-pars{root{2} - 1}ic}
    mrm{Li}_{2}'pars{t},dd t =
    -4,Immrm{Li}_{2}pars{-bracks{root{2} - 1}ic}
    \[5mm] & =
    bbx{4,Immrm{Li}_{2}pars{bracks{root{2} - 1}ic}}
    approx 1.6271
    end{align}





    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Your final expression $Immrm{Li}_2([sqrt 2 - 1]i)$ is missing a factor of $-4$ infront otherwise it does not approx to $1.6271$.
      $endgroup$
      – mrtaurho
      Dec 21 '18 at 16:41








    • 1




      $begingroup$
      @mrtaurho Thanks. Indeed it's $displaystylecolor{red}{+}4$ because I already switched the $displaystylemathrm{Li}_{2} $ argument sign. Note that $displaystyleoverline{mathrm{Li}_{2}left(,{z},right)} = mathrm{Li}_{2}left(,{overline{z}},right)$.
      $endgroup$
      – Felix Marin
      Dec 21 '18 at 17:17










    • $begingroup$
      I appreciate the quick and easy approach. Thanks
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:03










    • $begingroup$
      @clathratus You're welcome !!!.
      $endgroup$
      – Felix Marin
      Dec 22 '18 at 16:22
















    3












    $begingroup$

    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$

    begin{align}
    I & equiv int_{-pi/4}^{pi/4}{x over sinpars{x}},dd x,
    pars{~mbox{OP already shows that}
    I = bbox[10px,#ffd]{!!!!! 4!int_{0}^{root{2} - 1}!!{arctanpars{x} over x},dd x}~}
    end{align}




    Then,
    begin{align}
    I & = bbox[10px,#ffd]{4int_{0}^{root{2} - 1}{arctanpars{x} over x},dd x} =
    4,Imint_{0}^{root{2} - 1}{lnpars{1 + ic x} over x},dd x
    \[5mm] &
    stackrel{{large x = ic t} atop {large t = -ic x}}{=},,,
    4,Imint_{0}^{-pars{root{2} - 1}ic}
    {lnpars{1 - t} over t},dd t
    \[5mm] & =
    -4,Imint_{0}^{-pars{root{2} - 1}ic}
    mrm{Li}_{2}'pars{t},dd t =
    -4,Immrm{Li}_{2}pars{-bracks{root{2} - 1}ic}
    \[5mm] & =
    bbx{4,Immrm{Li}_{2}pars{bracks{root{2} - 1}ic}}
    approx 1.6271
    end{align}





    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Your final expression $Immrm{Li}_2([sqrt 2 - 1]i)$ is missing a factor of $-4$ infront otherwise it does not approx to $1.6271$.
      $endgroup$
      – mrtaurho
      Dec 21 '18 at 16:41








    • 1




      $begingroup$
      @mrtaurho Thanks. Indeed it's $displaystylecolor{red}{+}4$ because I already switched the $displaystylemathrm{Li}_{2} $ argument sign. Note that $displaystyleoverline{mathrm{Li}_{2}left(,{z},right)} = mathrm{Li}_{2}left(,{overline{z}},right)$.
      $endgroup$
      – Felix Marin
      Dec 21 '18 at 17:17










    • $begingroup$
      I appreciate the quick and easy approach. Thanks
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:03










    • $begingroup$
      @clathratus You're welcome !!!.
      $endgroup$
      – Felix Marin
      Dec 22 '18 at 16:22














    3












    3








    3





    $begingroup$

    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$

    begin{align}
    I & equiv int_{-pi/4}^{pi/4}{x over sinpars{x}},dd x,
    pars{~mbox{OP already shows that}
    I = bbox[10px,#ffd]{!!!!! 4!int_{0}^{root{2} - 1}!!{arctanpars{x} over x},dd x}~}
    end{align}




    Then,
    begin{align}
    I & = bbox[10px,#ffd]{4int_{0}^{root{2} - 1}{arctanpars{x} over x},dd x} =
    4,Imint_{0}^{root{2} - 1}{lnpars{1 + ic x} over x},dd x
    \[5mm] &
    stackrel{{large x = ic t} atop {large t = -ic x}}{=},,,
    4,Imint_{0}^{-pars{root{2} - 1}ic}
    {lnpars{1 - t} over t},dd t
    \[5mm] & =
    -4,Imint_{0}^{-pars{root{2} - 1}ic}
    mrm{Li}_{2}'pars{t},dd t =
    -4,Immrm{Li}_{2}pars{-bracks{root{2} - 1}ic}
    \[5mm] & =
    bbx{4,Immrm{Li}_{2}pars{bracks{root{2} - 1}ic}}
    approx 1.6271
    end{align}





    share|cite|improve this answer











    $endgroup$



    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$

    begin{align}
    I & equiv int_{-pi/4}^{pi/4}{x over sinpars{x}},dd x,
    pars{~mbox{OP already shows that}
    I = bbox[10px,#ffd]{!!!!! 4!int_{0}^{root{2} - 1}!!{arctanpars{x} over x},dd x}~}
    end{align}




    Then,
    begin{align}
    I & = bbox[10px,#ffd]{4int_{0}^{root{2} - 1}{arctanpars{x} over x},dd x} =
    4,Imint_{0}^{root{2} - 1}{lnpars{1 + ic x} over x},dd x
    \[5mm] &
    stackrel{{large x = ic t} atop {large t = -ic x}}{=},,,
    4,Imint_{0}^{-pars{root{2} - 1}ic}
    {lnpars{1 - t} over t},dd t
    \[5mm] & =
    -4,Imint_{0}^{-pars{root{2} - 1}ic}
    mrm{Li}_{2}'pars{t},dd t =
    -4,Immrm{Li}_{2}pars{-bracks{root{2} - 1}ic}
    \[5mm] & =
    bbx{4,Immrm{Li}_{2}pars{bracks{root{2} - 1}ic}}
    approx 1.6271
    end{align}






    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 21 '18 at 17:12

























    answered Dec 21 '18 at 15:14









    Felix MarinFelix Marin

    68.8k7109146




    68.8k7109146












    • $begingroup$
      Your final expression $Immrm{Li}_2([sqrt 2 - 1]i)$ is missing a factor of $-4$ infront otherwise it does not approx to $1.6271$.
      $endgroup$
      – mrtaurho
      Dec 21 '18 at 16:41








    • 1




      $begingroup$
      @mrtaurho Thanks. Indeed it's $displaystylecolor{red}{+}4$ because I already switched the $displaystylemathrm{Li}_{2} $ argument sign. Note that $displaystyleoverline{mathrm{Li}_{2}left(,{z},right)} = mathrm{Li}_{2}left(,{overline{z}},right)$.
      $endgroup$
      – Felix Marin
      Dec 21 '18 at 17:17










    • $begingroup$
      I appreciate the quick and easy approach. Thanks
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:03










    • $begingroup$
      @clathratus You're welcome !!!.
      $endgroup$
      – Felix Marin
      Dec 22 '18 at 16:22


















    • $begingroup$
      Your final expression $Immrm{Li}_2([sqrt 2 - 1]i)$ is missing a factor of $-4$ infront otherwise it does not approx to $1.6271$.
      $endgroup$
      – mrtaurho
      Dec 21 '18 at 16:41








    • 1




      $begingroup$
      @mrtaurho Thanks. Indeed it's $displaystylecolor{red}{+}4$ because I already switched the $displaystylemathrm{Li}_{2} $ argument sign. Note that $displaystyleoverline{mathrm{Li}_{2}left(,{z},right)} = mathrm{Li}_{2}left(,{overline{z}},right)$.
      $endgroup$
      – Felix Marin
      Dec 21 '18 at 17:17










    • $begingroup$
      I appreciate the quick and easy approach. Thanks
      $endgroup$
      – clathratus
      Dec 21 '18 at 19:03










    • $begingroup$
      @clathratus You're welcome !!!.
      $endgroup$
      – Felix Marin
      Dec 22 '18 at 16:22
















    $begingroup$
    Your final expression $Immrm{Li}_2([sqrt 2 - 1]i)$ is missing a factor of $-4$ infront otherwise it does not approx to $1.6271$.
    $endgroup$
    – mrtaurho
    Dec 21 '18 at 16:41






    $begingroup$
    Your final expression $Immrm{Li}_2([sqrt 2 - 1]i)$ is missing a factor of $-4$ infront otherwise it does not approx to $1.6271$.
    $endgroup$
    – mrtaurho
    Dec 21 '18 at 16:41






    1




    1




    $begingroup$
    @mrtaurho Thanks. Indeed it's $displaystylecolor{red}{+}4$ because I already switched the $displaystylemathrm{Li}_{2} $ argument sign. Note that $displaystyleoverline{mathrm{Li}_{2}left(,{z},right)} = mathrm{Li}_{2}left(,{overline{z}},right)$.
    $endgroup$
    – Felix Marin
    Dec 21 '18 at 17:17




    $begingroup$
    @mrtaurho Thanks. Indeed it's $displaystylecolor{red}{+}4$ because I already switched the $displaystylemathrm{Li}_{2} $ argument sign. Note that $displaystyleoverline{mathrm{Li}_{2}left(,{z},right)} = mathrm{Li}_{2}left(,{overline{z}},right)$.
    $endgroup$
    – Felix Marin
    Dec 21 '18 at 17:17












    $begingroup$
    I appreciate the quick and easy approach. Thanks
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:03




    $begingroup$
    I appreciate the quick and easy approach. Thanks
    $endgroup$
    – clathratus
    Dec 21 '18 at 19:03












    $begingroup$
    @clathratus You're welcome !!!.
    $endgroup$
    – Felix Marin
    Dec 22 '18 at 16:22




    $begingroup$
    @clathratus You're welcome !!!.
    $endgroup$
    – Felix Marin
    Dec 22 '18 at 16:22











    1












    $begingroup$

    begin{align}I&=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x\
    &=2Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{pi/4}-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
    &=frac{pi}{2}ln(sqrt{2}-1)-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
    end{align}



    In the latter integral perform the change of variable $y=dfrac{x}{2}$,



    begin{align}I&=frac{pi}{2}ln(sqrt{2}-1)-4int_0^{pi/8}lnleft(tanleft(xright)right),dx\
    &=frac{pi}{2}ln(sqrt{2}-1)-4Big[frac{1}{2}text{i}big(text{Li}_2(text{i}tan x)-text{Li}_2(-text{i}tan x)big)+xlnleft(tan xright)Big]_0^{pi/8}\
    &=boxed{2text{i}left(text{Li}_2left(text{i}left(1-sqrt{2}right)right)-text{Li}_2left(text{i}left(sqrt{2}-1right)right)right)}
    end{align}






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      begin{align}I&=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x\
      &=2Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{pi/4}-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
      &=frac{pi}{2}ln(sqrt{2}-1)-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
      end{align}



      In the latter integral perform the change of variable $y=dfrac{x}{2}$,



      begin{align}I&=frac{pi}{2}ln(sqrt{2}-1)-4int_0^{pi/8}lnleft(tanleft(xright)right),dx\
      &=frac{pi}{2}ln(sqrt{2}-1)-4Big[frac{1}{2}text{i}big(text{Li}_2(text{i}tan x)-text{Li}_2(-text{i}tan x)big)+xlnleft(tan xright)Big]_0^{pi/8}\
      &=boxed{2text{i}left(text{Li}_2left(text{i}left(1-sqrt{2}right)right)-text{Li}_2left(text{i}left(sqrt{2}-1right)right)right)}
      end{align}






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        begin{align}I&=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x\
        &=2Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{pi/4}-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
        &=frac{pi}{2}ln(sqrt{2}-1)-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
        end{align}



        In the latter integral perform the change of variable $y=dfrac{x}{2}$,



        begin{align}I&=frac{pi}{2}ln(sqrt{2}-1)-4int_0^{pi/8}lnleft(tanleft(xright)right),dx\
        &=frac{pi}{2}ln(sqrt{2}-1)-4Big[frac{1}{2}text{i}big(text{Li}_2(text{i}tan x)-text{Li}_2(-text{i}tan x)big)+xlnleft(tan xright)Big]_0^{pi/8}\
        &=boxed{2text{i}left(text{Li}_2left(text{i}left(1-sqrt{2}right)right)-text{Li}_2left(text{i}left(sqrt{2}-1right)right)right)}
        end{align}






        share|cite|improve this answer









        $endgroup$



        begin{align}I&=2int_0^{pi/4}frac{x}{sin x}mathrm{d}x\
        &=2Big[xlnleft(tanleft(frac{x}{2}right)right)Big]_0^{pi/4}-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
        &=frac{pi}{2}ln(sqrt{2}-1)-2int_0^{pi/4}lnleft(tanleft(frac{x}{2}right)right),dx\
        end{align}



        In the latter integral perform the change of variable $y=dfrac{x}{2}$,



        begin{align}I&=frac{pi}{2}ln(sqrt{2}-1)-4int_0^{pi/8}lnleft(tanleft(xright)right),dx\
        &=frac{pi}{2}ln(sqrt{2}-1)-4Big[frac{1}{2}text{i}big(text{Li}_2(text{i}tan x)-text{Li}_2(-text{i}tan x)big)+xlnleft(tan xright)Big]_0^{pi/8}\
        &=boxed{2text{i}left(text{Li}_2left(text{i}left(1-sqrt{2}right)right)-text{Li}_2left(text{i}left(sqrt{2}-1right)right)right)}
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 21 '18 at 21:17









        FDPFDP

        6,18711829




        6,18711829






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048132%2fevaluate-int-pi-4-pi-4-fracx-sin-x-mathrmdx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten