A clarification about Fubini's theorem
$begingroup$
Suppose $f(x,y)$ is a measurable function defined on an open set $Gsubsetmathbb{R}^{m}times mathbb{R}^{n}$ ($m,ngeq1$), and $Esubsetmathbb{R}^{m}$ and $Fsubsetmathbb{R}^{n}$ are two compact sets such that $Etimes Fsubset G$. Suppose
$$g(y)=int_{E}f(x,y)dxgeq0$$ and is integrable on $F$, i.e., $$int_{F}|g(y)|dy=int_{F}g(y)dy<infty.$$ Can we say that $f$ is integrable on $Etimes F$, i.e.,
$$int_{F}int_{E}|f(x,y)|dxdy<infty?$$
real-analysis measure-theory
$endgroup$
add a comment |
$begingroup$
Suppose $f(x,y)$ is a measurable function defined on an open set $Gsubsetmathbb{R}^{m}times mathbb{R}^{n}$ ($m,ngeq1$), and $Esubsetmathbb{R}^{m}$ and $Fsubsetmathbb{R}^{n}$ are two compact sets such that $Etimes Fsubset G$. Suppose
$$g(y)=int_{E}f(x,y)dxgeq0$$ and is integrable on $F$, i.e., $$int_{F}|g(y)|dy=int_{F}g(y)dy<infty.$$ Can we say that $f$ is integrable on $Etimes F$, i.e.,
$$int_{F}int_{E}|f(x,y)|dxdy<infty?$$
real-analysis measure-theory
$endgroup$
add a comment |
$begingroup$
Suppose $f(x,y)$ is a measurable function defined on an open set $Gsubsetmathbb{R}^{m}times mathbb{R}^{n}$ ($m,ngeq1$), and $Esubsetmathbb{R}^{m}$ and $Fsubsetmathbb{R}^{n}$ are two compact sets such that $Etimes Fsubset G$. Suppose
$$g(y)=int_{E}f(x,y)dxgeq0$$ and is integrable on $F$, i.e., $$int_{F}|g(y)|dy=int_{F}g(y)dy<infty.$$ Can we say that $f$ is integrable on $Etimes F$, i.e.,
$$int_{F}int_{E}|f(x,y)|dxdy<infty?$$
real-analysis measure-theory
$endgroup$
Suppose $f(x,y)$ is a measurable function defined on an open set $Gsubsetmathbb{R}^{m}times mathbb{R}^{n}$ ($m,ngeq1$), and $Esubsetmathbb{R}^{m}$ and $Fsubsetmathbb{R}^{n}$ are two compact sets such that $Etimes Fsubset G$. Suppose
$$g(y)=int_{E}f(x,y)dxgeq0$$ and is integrable on $F$, i.e., $$int_{F}|g(y)|dy=int_{F}g(y)dy<infty.$$ Can we say that $f$ is integrable on $Etimes F$, i.e.,
$$int_{F}int_{E}|f(x,y)|dxdy<infty?$$
real-analysis measure-theory
real-analysis measure-theory
asked Dec 26 '18 at 0:02
M. RahmatM. Rahmat
291212
291212
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
No, you cannot draw such a conclusion. Just take $f(x,y)=x h(y)$ where $h$ is not integrable. If $E$ is symmetric then $g(y)=0$ for all $y$ but $f$ is not integrable.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052524%2fa-clarification-about-fubinis-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, you cannot draw such a conclusion. Just take $f(x,y)=x h(y)$ where $h$ is not integrable. If $E$ is symmetric then $g(y)=0$ for all $y$ but $f$ is not integrable.
$endgroup$
add a comment |
$begingroup$
No, you cannot draw such a conclusion. Just take $f(x,y)=x h(y)$ where $h$ is not integrable. If $E$ is symmetric then $g(y)=0$ for all $y$ but $f$ is not integrable.
$endgroup$
add a comment |
$begingroup$
No, you cannot draw such a conclusion. Just take $f(x,y)=x h(y)$ where $h$ is not integrable. If $E$ is symmetric then $g(y)=0$ for all $y$ but $f$ is not integrable.
$endgroup$
No, you cannot draw such a conclusion. Just take $f(x,y)=x h(y)$ where $h$ is not integrable. If $E$ is symmetric then $g(y)=0$ for all $y$ but $f$ is not integrable.
answered Dec 26 '18 at 0:06
Kavi Rama MurthyKavi Rama Murthy
73.7k53170
73.7k53170
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052524%2fa-clarification-about-fubinis-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown