Sign of the derivative of the Hankel Function with purely imaginary arguments
Consider the Hankel function of the first kind $H^{(1)}_nu (z)$.
If I restrict $z$ to be a purely imaginary number of the form $ix$ where $x in mathbb{R}$ and $x>0$ and let $nu =0$. We can see that $iH^{(1)}_0 (ix) > 0$. Using the standard recursion relationship for the derivatives of the Hankel (and Bessel) functions, we see that $frac{partial}{partial x} big(iH^{(1)}_0 (ix)big) = H^{(1)}_1 (ix)$, and running some calculations, we see that $H^{(1)} _1 (ix) < 0$ for $x>0$.
If you continue taking the $x$ derivatives of $iH_0 ^{(1)} (ix)$, the sign of the derivatives alternates for $x>0$. My question is, how do I prove that for even $n$, $frac{rm d ^n}{rm d x^n} big(iH^{(1)}_0 (ix)big) >0$ and for odd $n$, $frac{rm d ^n}{rm d x^n} big(iH^{(1)}_0 (ix)big) <0$?
calculus complex-analysis bessel-functions
add a comment |
Consider the Hankel function of the first kind $H^{(1)}_nu (z)$.
If I restrict $z$ to be a purely imaginary number of the form $ix$ where $x in mathbb{R}$ and $x>0$ and let $nu =0$. We can see that $iH^{(1)}_0 (ix) > 0$. Using the standard recursion relationship for the derivatives of the Hankel (and Bessel) functions, we see that $frac{partial}{partial x} big(iH^{(1)}_0 (ix)big) = H^{(1)}_1 (ix)$, and running some calculations, we see that $H^{(1)} _1 (ix) < 0$ for $x>0$.
If you continue taking the $x$ derivatives of $iH_0 ^{(1)} (ix)$, the sign of the derivatives alternates for $x>0$. My question is, how do I prove that for even $n$, $frac{rm d ^n}{rm d x^n} big(iH^{(1)}_0 (ix)big) >0$ and for odd $n$, $frac{rm d ^n}{rm d x^n} big(iH^{(1)}_0 (ix)big) <0$?
calculus complex-analysis bessel-functions
add a comment |
Consider the Hankel function of the first kind $H^{(1)}_nu (z)$.
If I restrict $z$ to be a purely imaginary number of the form $ix$ where $x in mathbb{R}$ and $x>0$ and let $nu =0$. We can see that $iH^{(1)}_0 (ix) > 0$. Using the standard recursion relationship for the derivatives of the Hankel (and Bessel) functions, we see that $frac{partial}{partial x} big(iH^{(1)}_0 (ix)big) = H^{(1)}_1 (ix)$, and running some calculations, we see that $H^{(1)} _1 (ix) < 0$ for $x>0$.
If you continue taking the $x$ derivatives of $iH_0 ^{(1)} (ix)$, the sign of the derivatives alternates for $x>0$. My question is, how do I prove that for even $n$, $frac{rm d ^n}{rm d x^n} big(iH^{(1)}_0 (ix)big) >0$ and for odd $n$, $frac{rm d ^n}{rm d x^n} big(iH^{(1)}_0 (ix)big) <0$?
calculus complex-analysis bessel-functions
Consider the Hankel function of the first kind $H^{(1)}_nu (z)$.
If I restrict $z$ to be a purely imaginary number of the form $ix$ where $x in mathbb{R}$ and $x>0$ and let $nu =0$. We can see that $iH^{(1)}_0 (ix) > 0$. Using the standard recursion relationship for the derivatives of the Hankel (and Bessel) functions, we see that $frac{partial}{partial x} big(iH^{(1)}_0 (ix)big) = H^{(1)}_1 (ix)$, and running some calculations, we see that $H^{(1)} _1 (ix) < 0$ for $x>0$.
If you continue taking the $x$ derivatives of $iH_0 ^{(1)} (ix)$, the sign of the derivatives alternates for $x>0$. My question is, how do I prove that for even $n$, $frac{rm d ^n}{rm d x^n} big(iH^{(1)}_0 (ix)big) >0$ and for odd $n$, $frac{rm d ^n}{rm d x^n} big(iH^{(1)}_0 (ix)big) <0$?
calculus complex-analysis bessel-functions
calculus complex-analysis bessel-functions
asked Nov 29 '18 at 16:43
user207526user207526
61
61
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
We can transform the Hankel function into a modified Bessel function using the correspondence (DLMF) for $x>0$
begin{equation}
i{H^{(1)}_{0}}left(ixright)=frac{2}{pi}K_{0}left(xright)
end{equation}
Now, the $k$-th derivative can be obtained from the expression (DLMF) of that of the modified Bessel function:
begin{align}
&K_{0}^{(k)}left(xright)=\
&frac{1}{2^{k}}left(e^{-ikpi}K_{-%
k}left(xright)+{kchoose1}e^{-i(k-2)pi}K_{-k+2}left(x%
right)+{kchoose2}e^{-i(k-4)pi}K_{-k+4}left(xright)+%
cdots+e^{ikpi}K_{+k}left(xright)right)
end{align}
All phase factors of the sum equal $-1$ if $k$ is odd and $1$ if $k$ is even. As
begin{align}
frac{d^k}{dx^k}left[ i{H^{(1)}_{0}}left(ixright)right]&=frac{2}{pi}frac{d^k}{dx^k}left[K_{0}left(xright)right]
end{align}
Since $K_{-nu}(x)=K_nu(x)$ and $K_nu(x)$ is positive, the sign of the $k$-th derivative is the same as $(-1)^k$ as expected.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018878%2fsign-of-the-derivative-of-the-hankel-function-with-purely-imaginary-arguments%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
We can transform the Hankel function into a modified Bessel function using the correspondence (DLMF) for $x>0$
begin{equation}
i{H^{(1)}_{0}}left(ixright)=frac{2}{pi}K_{0}left(xright)
end{equation}
Now, the $k$-th derivative can be obtained from the expression (DLMF) of that of the modified Bessel function:
begin{align}
&K_{0}^{(k)}left(xright)=\
&frac{1}{2^{k}}left(e^{-ikpi}K_{-%
k}left(xright)+{kchoose1}e^{-i(k-2)pi}K_{-k+2}left(x%
right)+{kchoose2}e^{-i(k-4)pi}K_{-k+4}left(xright)+%
cdots+e^{ikpi}K_{+k}left(xright)right)
end{align}
All phase factors of the sum equal $-1$ if $k$ is odd and $1$ if $k$ is even. As
begin{align}
frac{d^k}{dx^k}left[ i{H^{(1)}_{0}}left(ixright)right]&=frac{2}{pi}frac{d^k}{dx^k}left[K_{0}left(xright)right]
end{align}
Since $K_{-nu}(x)=K_nu(x)$ and $K_nu(x)$ is positive, the sign of the $k$-th derivative is the same as $(-1)^k$ as expected.
add a comment |
We can transform the Hankel function into a modified Bessel function using the correspondence (DLMF) for $x>0$
begin{equation}
i{H^{(1)}_{0}}left(ixright)=frac{2}{pi}K_{0}left(xright)
end{equation}
Now, the $k$-th derivative can be obtained from the expression (DLMF) of that of the modified Bessel function:
begin{align}
&K_{0}^{(k)}left(xright)=\
&frac{1}{2^{k}}left(e^{-ikpi}K_{-%
k}left(xright)+{kchoose1}e^{-i(k-2)pi}K_{-k+2}left(x%
right)+{kchoose2}e^{-i(k-4)pi}K_{-k+4}left(xright)+%
cdots+e^{ikpi}K_{+k}left(xright)right)
end{align}
All phase factors of the sum equal $-1$ if $k$ is odd and $1$ if $k$ is even. As
begin{align}
frac{d^k}{dx^k}left[ i{H^{(1)}_{0}}left(ixright)right]&=frac{2}{pi}frac{d^k}{dx^k}left[K_{0}left(xright)right]
end{align}
Since $K_{-nu}(x)=K_nu(x)$ and $K_nu(x)$ is positive, the sign of the $k$-th derivative is the same as $(-1)^k$ as expected.
add a comment |
We can transform the Hankel function into a modified Bessel function using the correspondence (DLMF) for $x>0$
begin{equation}
i{H^{(1)}_{0}}left(ixright)=frac{2}{pi}K_{0}left(xright)
end{equation}
Now, the $k$-th derivative can be obtained from the expression (DLMF) of that of the modified Bessel function:
begin{align}
&K_{0}^{(k)}left(xright)=\
&frac{1}{2^{k}}left(e^{-ikpi}K_{-%
k}left(xright)+{kchoose1}e^{-i(k-2)pi}K_{-k+2}left(x%
right)+{kchoose2}e^{-i(k-4)pi}K_{-k+4}left(xright)+%
cdots+e^{ikpi}K_{+k}left(xright)right)
end{align}
All phase factors of the sum equal $-1$ if $k$ is odd and $1$ if $k$ is even. As
begin{align}
frac{d^k}{dx^k}left[ i{H^{(1)}_{0}}left(ixright)right]&=frac{2}{pi}frac{d^k}{dx^k}left[K_{0}left(xright)right]
end{align}
Since $K_{-nu}(x)=K_nu(x)$ and $K_nu(x)$ is positive, the sign of the $k$-th derivative is the same as $(-1)^k$ as expected.
We can transform the Hankel function into a modified Bessel function using the correspondence (DLMF) for $x>0$
begin{equation}
i{H^{(1)}_{0}}left(ixright)=frac{2}{pi}K_{0}left(xright)
end{equation}
Now, the $k$-th derivative can be obtained from the expression (DLMF) of that of the modified Bessel function:
begin{align}
&K_{0}^{(k)}left(xright)=\
&frac{1}{2^{k}}left(e^{-ikpi}K_{-%
k}left(xright)+{kchoose1}e^{-i(k-2)pi}K_{-k+2}left(x%
right)+{kchoose2}e^{-i(k-4)pi}K_{-k+4}left(xright)+%
cdots+e^{ikpi}K_{+k}left(xright)right)
end{align}
All phase factors of the sum equal $-1$ if $k$ is odd and $1$ if $k$ is even. As
begin{align}
frac{d^k}{dx^k}left[ i{H^{(1)}_{0}}left(ixright)right]&=frac{2}{pi}frac{d^k}{dx^k}left[K_{0}left(xright)right]
end{align}
Since $K_{-nu}(x)=K_nu(x)$ and $K_nu(x)$ is positive, the sign of the $k$-th derivative is the same as $(-1)^k$ as expected.
answered Nov 29 '18 at 21:10
Paul EntaPaul Enta
4,28611129
4,28611129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018878%2fsign-of-the-derivative-of-the-hankel-function-with-purely-imaginary-arguments%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown