How to prove $int_0^1xln^2(1+x)ln(frac{x^2}{1+x})frac{dx}{1+x^2}$












11












$begingroup$


How to prove$$int_0^1xln^2(1+x)lnleft(frac{x^2}{1+x}right)frac{dx}{1+x^2}=-frac{7}{32}cdotzeta{(3)}ln2+frac{3pi^2}{128}cdotln^22-frac{1}{64}cdotln^42-frac{13pi^4}{46080}$$
The substitution $$x=frac{1-y}{1+y}$$leads to calculate the integrals that are unknow.
$$int_0^1yln(1-y)ln^2(1+y)frac{dy}{1+y^2}, int_0^1frac{yln^3(1+y)}{1+y^2}dy$$.
For the moment,Ido not see how to calculate this integral










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Hi! Where did you found this integral?
    $endgroup$
    – Zacky
    Dec 25 '18 at 22:50








  • 2




    $begingroup$
    $$lnbigg(frac{x^2}{x+1}bigg)=ln(x^2)-ln(1+x)=2ln(x)-ln(1+x)$$ don't know if that helps
    $endgroup$
    – clathratus
    Dec 25 '18 at 23:08






  • 4




    $begingroup$
    Here is an ideea, we have: $$a^2 b=frac16left((a+b)^3-(a-b)^3-2b^3right)$$ Thus the integral is equal to: $$I=2cdot frac16left( int_0^1frac{xln^3(1-x^2)}{1+x^2}dx+ int_0^1frac{xln^3left(frac{1-x}{1+x}right)}{1+x^2}dx -2int_0^1 frac{xln^3(1-x)}{1+x^2}right)-int_0^1 frac{xln^3(1+x)}{1+x^2}dx$$ Thus let $x^2=t$ for the first one and $frac{1-x}{1+x}=t$ for the second one and try to simplify some. This way we don't have any product between the logarithms.
    $endgroup$
    – Zacky
    Dec 25 '18 at 23:22








  • 1




    $begingroup$
    @Zacky If it helps, making the substitutions $xto -frac{x}{1+x}$ and $xto frac{x-1}{2}$ shows that the integral in question is equal to $$int_0^1 ln^2bigg(frac{1+x}{2}bigg)lnbigg(frac{1}{2}frac{(1-x)^2}{1+x}bigg)frac{x-1}{x+1}frac{dx}{1+x^2}$$ Perhaps using your $a^2 b$ trick on this integral and combining it with the original representation can cause some sort of desirable cancellation to happen.
    $endgroup$
    – Frpzzd
    Dec 25 '18 at 23:30






  • 1




    $begingroup$
    @Diger: I will be glad to see your solution using polylog identities.
    $endgroup$
    – FDP
    Dec 28 '18 at 10:32
















11












$begingroup$


How to prove$$int_0^1xln^2(1+x)lnleft(frac{x^2}{1+x}right)frac{dx}{1+x^2}=-frac{7}{32}cdotzeta{(3)}ln2+frac{3pi^2}{128}cdotln^22-frac{1}{64}cdotln^42-frac{13pi^4}{46080}$$
The substitution $$x=frac{1-y}{1+y}$$leads to calculate the integrals that are unknow.
$$int_0^1yln(1-y)ln^2(1+y)frac{dy}{1+y^2}, int_0^1frac{yln^3(1+y)}{1+y^2}dy$$.
For the moment,Ido not see how to calculate this integral










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Hi! Where did you found this integral?
    $endgroup$
    – Zacky
    Dec 25 '18 at 22:50








  • 2




    $begingroup$
    $$lnbigg(frac{x^2}{x+1}bigg)=ln(x^2)-ln(1+x)=2ln(x)-ln(1+x)$$ don't know if that helps
    $endgroup$
    – clathratus
    Dec 25 '18 at 23:08






  • 4




    $begingroup$
    Here is an ideea, we have: $$a^2 b=frac16left((a+b)^3-(a-b)^3-2b^3right)$$ Thus the integral is equal to: $$I=2cdot frac16left( int_0^1frac{xln^3(1-x^2)}{1+x^2}dx+ int_0^1frac{xln^3left(frac{1-x}{1+x}right)}{1+x^2}dx -2int_0^1 frac{xln^3(1-x)}{1+x^2}right)-int_0^1 frac{xln^3(1+x)}{1+x^2}dx$$ Thus let $x^2=t$ for the first one and $frac{1-x}{1+x}=t$ for the second one and try to simplify some. This way we don't have any product between the logarithms.
    $endgroup$
    – Zacky
    Dec 25 '18 at 23:22








  • 1




    $begingroup$
    @Zacky If it helps, making the substitutions $xto -frac{x}{1+x}$ and $xto frac{x-1}{2}$ shows that the integral in question is equal to $$int_0^1 ln^2bigg(frac{1+x}{2}bigg)lnbigg(frac{1}{2}frac{(1-x)^2}{1+x}bigg)frac{x-1}{x+1}frac{dx}{1+x^2}$$ Perhaps using your $a^2 b$ trick on this integral and combining it with the original representation can cause some sort of desirable cancellation to happen.
    $endgroup$
    – Frpzzd
    Dec 25 '18 at 23:30






  • 1




    $begingroup$
    @Diger: I will be glad to see your solution using polylog identities.
    $endgroup$
    – FDP
    Dec 28 '18 at 10:32














11












11








11


7



$begingroup$


How to prove$$int_0^1xln^2(1+x)lnleft(frac{x^2}{1+x}right)frac{dx}{1+x^2}=-frac{7}{32}cdotzeta{(3)}ln2+frac{3pi^2}{128}cdotln^22-frac{1}{64}cdotln^42-frac{13pi^4}{46080}$$
The substitution $$x=frac{1-y}{1+y}$$leads to calculate the integrals that are unknow.
$$int_0^1yln(1-y)ln^2(1+y)frac{dy}{1+y^2}, int_0^1frac{yln^3(1+y)}{1+y^2}dy$$.
For the moment,Ido not see how to calculate this integral










share|cite|improve this question











$endgroup$




How to prove$$int_0^1xln^2(1+x)lnleft(frac{x^2}{1+x}right)frac{dx}{1+x^2}=-frac{7}{32}cdotzeta{(3)}ln2+frac{3pi^2}{128}cdotln^22-frac{1}{64}cdotln^42-frac{13pi^4}{46080}$$
The substitution $$x=frac{1-y}{1+y}$$leads to calculate the integrals that are unknow.
$$int_0^1yln(1-y)ln^2(1+y)frac{dy}{1+y^2}, int_0^1frac{yln^3(1+y)}{1+y^2}dy$$.
For the moment,Ido not see how to calculate this integral







integration definite-integrals polylogarithm






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 25 '18 at 23:00









Don Thousand

4,574734




4,574734










asked Dec 25 '18 at 22:42









user178256user178256

2,1401832




2,1401832








  • 2




    $begingroup$
    Hi! Where did you found this integral?
    $endgroup$
    – Zacky
    Dec 25 '18 at 22:50








  • 2




    $begingroup$
    $$lnbigg(frac{x^2}{x+1}bigg)=ln(x^2)-ln(1+x)=2ln(x)-ln(1+x)$$ don't know if that helps
    $endgroup$
    – clathratus
    Dec 25 '18 at 23:08






  • 4




    $begingroup$
    Here is an ideea, we have: $$a^2 b=frac16left((a+b)^3-(a-b)^3-2b^3right)$$ Thus the integral is equal to: $$I=2cdot frac16left( int_0^1frac{xln^3(1-x^2)}{1+x^2}dx+ int_0^1frac{xln^3left(frac{1-x}{1+x}right)}{1+x^2}dx -2int_0^1 frac{xln^3(1-x)}{1+x^2}right)-int_0^1 frac{xln^3(1+x)}{1+x^2}dx$$ Thus let $x^2=t$ for the first one and $frac{1-x}{1+x}=t$ for the second one and try to simplify some. This way we don't have any product between the logarithms.
    $endgroup$
    – Zacky
    Dec 25 '18 at 23:22








  • 1




    $begingroup$
    @Zacky If it helps, making the substitutions $xto -frac{x}{1+x}$ and $xto frac{x-1}{2}$ shows that the integral in question is equal to $$int_0^1 ln^2bigg(frac{1+x}{2}bigg)lnbigg(frac{1}{2}frac{(1-x)^2}{1+x}bigg)frac{x-1}{x+1}frac{dx}{1+x^2}$$ Perhaps using your $a^2 b$ trick on this integral and combining it with the original representation can cause some sort of desirable cancellation to happen.
    $endgroup$
    – Frpzzd
    Dec 25 '18 at 23:30






  • 1




    $begingroup$
    @Diger: I will be glad to see your solution using polylog identities.
    $endgroup$
    – FDP
    Dec 28 '18 at 10:32














  • 2




    $begingroup$
    Hi! Where did you found this integral?
    $endgroup$
    – Zacky
    Dec 25 '18 at 22:50








  • 2




    $begingroup$
    $$lnbigg(frac{x^2}{x+1}bigg)=ln(x^2)-ln(1+x)=2ln(x)-ln(1+x)$$ don't know if that helps
    $endgroup$
    – clathratus
    Dec 25 '18 at 23:08






  • 4




    $begingroup$
    Here is an ideea, we have: $$a^2 b=frac16left((a+b)^3-(a-b)^3-2b^3right)$$ Thus the integral is equal to: $$I=2cdot frac16left( int_0^1frac{xln^3(1-x^2)}{1+x^2}dx+ int_0^1frac{xln^3left(frac{1-x}{1+x}right)}{1+x^2}dx -2int_0^1 frac{xln^3(1-x)}{1+x^2}right)-int_0^1 frac{xln^3(1+x)}{1+x^2}dx$$ Thus let $x^2=t$ for the first one and $frac{1-x}{1+x}=t$ for the second one and try to simplify some. This way we don't have any product between the logarithms.
    $endgroup$
    – Zacky
    Dec 25 '18 at 23:22








  • 1




    $begingroup$
    @Zacky If it helps, making the substitutions $xto -frac{x}{1+x}$ and $xto frac{x-1}{2}$ shows that the integral in question is equal to $$int_0^1 ln^2bigg(frac{1+x}{2}bigg)lnbigg(frac{1}{2}frac{(1-x)^2}{1+x}bigg)frac{x-1}{x+1}frac{dx}{1+x^2}$$ Perhaps using your $a^2 b$ trick on this integral and combining it with the original representation can cause some sort of desirable cancellation to happen.
    $endgroup$
    – Frpzzd
    Dec 25 '18 at 23:30






  • 1




    $begingroup$
    @Diger: I will be glad to see your solution using polylog identities.
    $endgroup$
    – FDP
    Dec 28 '18 at 10:32








2




2




$begingroup$
Hi! Where did you found this integral?
$endgroup$
– Zacky
Dec 25 '18 at 22:50






$begingroup$
Hi! Where did you found this integral?
$endgroup$
– Zacky
Dec 25 '18 at 22:50






2




2




$begingroup$
$$lnbigg(frac{x^2}{x+1}bigg)=ln(x^2)-ln(1+x)=2ln(x)-ln(1+x)$$ don't know if that helps
$endgroup$
– clathratus
Dec 25 '18 at 23:08




$begingroup$
$$lnbigg(frac{x^2}{x+1}bigg)=ln(x^2)-ln(1+x)=2ln(x)-ln(1+x)$$ don't know if that helps
$endgroup$
– clathratus
Dec 25 '18 at 23:08




4




4




$begingroup$
Here is an ideea, we have: $$a^2 b=frac16left((a+b)^3-(a-b)^3-2b^3right)$$ Thus the integral is equal to: $$I=2cdot frac16left( int_0^1frac{xln^3(1-x^2)}{1+x^2}dx+ int_0^1frac{xln^3left(frac{1-x}{1+x}right)}{1+x^2}dx -2int_0^1 frac{xln^3(1-x)}{1+x^2}right)-int_0^1 frac{xln^3(1+x)}{1+x^2}dx$$ Thus let $x^2=t$ for the first one and $frac{1-x}{1+x}=t$ for the second one and try to simplify some. This way we don't have any product between the logarithms.
$endgroup$
– Zacky
Dec 25 '18 at 23:22






$begingroup$
Here is an ideea, we have: $$a^2 b=frac16left((a+b)^3-(a-b)^3-2b^3right)$$ Thus the integral is equal to: $$I=2cdot frac16left( int_0^1frac{xln^3(1-x^2)}{1+x^2}dx+ int_0^1frac{xln^3left(frac{1-x}{1+x}right)}{1+x^2}dx -2int_0^1 frac{xln^3(1-x)}{1+x^2}right)-int_0^1 frac{xln^3(1+x)}{1+x^2}dx$$ Thus let $x^2=t$ for the first one and $frac{1-x}{1+x}=t$ for the second one and try to simplify some. This way we don't have any product between the logarithms.
$endgroup$
– Zacky
Dec 25 '18 at 23:22






1




1




$begingroup$
@Zacky If it helps, making the substitutions $xto -frac{x}{1+x}$ and $xto frac{x-1}{2}$ shows that the integral in question is equal to $$int_0^1 ln^2bigg(frac{1+x}{2}bigg)lnbigg(frac{1}{2}frac{(1-x)^2}{1+x}bigg)frac{x-1}{x+1}frac{dx}{1+x^2}$$ Perhaps using your $a^2 b$ trick on this integral and combining it with the original representation can cause some sort of desirable cancellation to happen.
$endgroup$
– Frpzzd
Dec 25 '18 at 23:30




$begingroup$
@Zacky If it helps, making the substitutions $xto -frac{x}{1+x}$ and $xto frac{x-1}{2}$ shows that the integral in question is equal to $$int_0^1 ln^2bigg(frac{1+x}{2}bigg)lnbigg(frac{1}{2}frac{(1-x)^2}{1+x}bigg)frac{x-1}{x+1}frac{dx}{1+x^2}$$ Perhaps using your $a^2 b$ trick on this integral and combining it with the original representation can cause some sort of desirable cancellation to happen.
$endgroup$
– Frpzzd
Dec 25 '18 at 23:30




1




1




$begingroup$
@Diger: I will be glad to see your solution using polylog identities.
$endgroup$
– FDP
Dec 28 '18 at 10:32




$begingroup$
@Diger: I will be glad to see your solution using polylog identities.
$endgroup$
– FDP
Dec 28 '18 at 10:32










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052491%2fhow-to-prove-int-01x-ln21x-ln-fracx21x-fracdx1x2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052491%2fhow-to-prove-int-01x-ln21x-ln-fracx21x-fracdx1x2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten