Evaluate integral of $ln(u)exp{-bu}/u du$
$begingroup$
While doing my research, I came across this integral and don't know how to solve for this:
$$int_{0}^{infty}x^2exp{ax-be^{ax}}dx,text{where $a,b>0$}.$$
My attempt:
begin{align}
int_{0}^{infty}x^2exp{ax-be^{ax}}dx &overset{x = ln u}{=} int_1^{infty}frac{1}{u}left(ln uright)^{2}expleft{aln u-be^{a ln u}right}du\
&=int_{1}^{infty}(ln u)^2u^{a-1}e^{-bu^a}du\
&overset{t=u^a}{propto} int_{1}^{infty}(ln t)^2e^{-bt}dt = A
end{align}
Then, integration by part where $k=(ln t)^2$, we have:
$$Apropto int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dt=B$$
Here, my first approach is to use Taylor Series expansion and obtain:
$$B=int_{1}^{infty}frac{1}{t}(ln t)sum_{n=0}^inftyfrac{(-bt)^n}{n!}dt=int_{1}^{infty}sum_{n=0}^{infty}(-1)^nfrac{b^nt^{n-1}ln t}{n!}dt$$
However, here $f_{n}(t) = (-1)^nfrac{b^nt^{n-1}ln t}{n!}$ is not greater than $0$ for all values of $t$ since $b > 0$, so I can't interchange integration and summation. (by Fubini's theorem)
Then, my second approach I integration by part one more time:
$$B=int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dtoverset{k=ln x}{=}int_{0}^{infty}kexp{-be^k}dk$$
Let $y=k$ and $dz=exp{-be^k}dk rightarrow z = -E_1left(be^kright)$
So,
$$B=-tE_1left(be^kright)big|_{0}^{infty}+int_{0}^{infty}E_1left(be^kright)dk$$
where $E_1left(be^kright)$ is the exponential integral of $be^k$.
But now, I don't know where to go from here.
Any suggestion?
integration definite-integrals improper-integrals gamma-function
$endgroup$
add a comment |
$begingroup$
While doing my research, I came across this integral and don't know how to solve for this:
$$int_{0}^{infty}x^2exp{ax-be^{ax}}dx,text{where $a,b>0$}.$$
My attempt:
begin{align}
int_{0}^{infty}x^2exp{ax-be^{ax}}dx &overset{x = ln u}{=} int_1^{infty}frac{1}{u}left(ln uright)^{2}expleft{aln u-be^{a ln u}right}du\
&=int_{1}^{infty}(ln u)^2u^{a-1}e^{-bu^a}du\
&overset{t=u^a}{propto} int_{1}^{infty}(ln t)^2e^{-bt}dt = A
end{align}
Then, integration by part where $k=(ln t)^2$, we have:
$$Apropto int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dt=B$$
Here, my first approach is to use Taylor Series expansion and obtain:
$$B=int_{1}^{infty}frac{1}{t}(ln t)sum_{n=0}^inftyfrac{(-bt)^n}{n!}dt=int_{1}^{infty}sum_{n=0}^{infty}(-1)^nfrac{b^nt^{n-1}ln t}{n!}dt$$
However, here $f_{n}(t) = (-1)^nfrac{b^nt^{n-1}ln t}{n!}$ is not greater than $0$ for all values of $t$ since $b > 0$, so I can't interchange integration and summation. (by Fubini's theorem)
Then, my second approach I integration by part one more time:
$$B=int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dtoverset{k=ln x}{=}int_{0}^{infty}kexp{-be^k}dk$$
Let $y=k$ and $dz=exp{-be^k}dk rightarrow z = -E_1left(be^kright)$
So,
$$B=-tE_1left(be^kright)big|_{0}^{infty}+int_{0}^{infty}E_1left(be^kright)dk$$
where $E_1left(be^kright)$ is the exponential integral of $be^k$.
But now, I don't know where to go from here.
Any suggestion?
integration definite-integrals improper-integrals gamma-function
$endgroup$
add a comment |
$begingroup$
While doing my research, I came across this integral and don't know how to solve for this:
$$int_{0}^{infty}x^2exp{ax-be^{ax}}dx,text{where $a,b>0$}.$$
My attempt:
begin{align}
int_{0}^{infty}x^2exp{ax-be^{ax}}dx &overset{x = ln u}{=} int_1^{infty}frac{1}{u}left(ln uright)^{2}expleft{aln u-be^{a ln u}right}du\
&=int_{1}^{infty}(ln u)^2u^{a-1}e^{-bu^a}du\
&overset{t=u^a}{propto} int_{1}^{infty}(ln t)^2e^{-bt}dt = A
end{align}
Then, integration by part where $k=(ln t)^2$, we have:
$$Apropto int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dt=B$$
Here, my first approach is to use Taylor Series expansion and obtain:
$$B=int_{1}^{infty}frac{1}{t}(ln t)sum_{n=0}^inftyfrac{(-bt)^n}{n!}dt=int_{1}^{infty}sum_{n=0}^{infty}(-1)^nfrac{b^nt^{n-1}ln t}{n!}dt$$
However, here $f_{n}(t) = (-1)^nfrac{b^nt^{n-1}ln t}{n!}$ is not greater than $0$ for all values of $t$ since $b > 0$, so I can't interchange integration and summation. (by Fubini's theorem)
Then, my second approach I integration by part one more time:
$$B=int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dtoverset{k=ln x}{=}int_{0}^{infty}kexp{-be^k}dk$$
Let $y=k$ and $dz=exp{-be^k}dk rightarrow z = -E_1left(be^kright)$
So,
$$B=-tE_1left(be^kright)big|_{0}^{infty}+int_{0}^{infty}E_1left(be^kright)dk$$
where $E_1left(be^kright)$ is the exponential integral of $be^k$.
But now, I don't know where to go from here.
Any suggestion?
integration definite-integrals improper-integrals gamma-function
$endgroup$
While doing my research, I came across this integral and don't know how to solve for this:
$$int_{0}^{infty}x^2exp{ax-be^{ax}}dx,text{where $a,b>0$}.$$
My attempt:
begin{align}
int_{0}^{infty}x^2exp{ax-be^{ax}}dx &overset{x = ln u}{=} int_1^{infty}frac{1}{u}left(ln uright)^{2}expleft{aln u-be^{a ln u}right}du\
&=int_{1}^{infty}(ln u)^2u^{a-1}e^{-bu^a}du\
&overset{t=u^a}{propto} int_{1}^{infty}(ln t)^2e^{-bt}dt = A
end{align}
Then, integration by part where $k=(ln t)^2$, we have:
$$Apropto int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dt=B$$
Here, my first approach is to use Taylor Series expansion and obtain:
$$B=int_{1}^{infty}frac{1}{t}(ln t)sum_{n=0}^inftyfrac{(-bt)^n}{n!}dt=int_{1}^{infty}sum_{n=0}^{infty}(-1)^nfrac{b^nt^{n-1}ln t}{n!}dt$$
However, here $f_{n}(t) = (-1)^nfrac{b^nt^{n-1}ln t}{n!}$ is not greater than $0$ for all values of $t$ since $b > 0$, so I can't interchange integration and summation. (by Fubini's theorem)
Then, my second approach I integration by part one more time:
$$B=int_{1}^{infty}frac{1}{t}(ln t )exp{-bt}dtoverset{k=ln x}{=}int_{0}^{infty}kexp{-be^k}dk$$
Let $y=k$ and $dz=exp{-be^k}dk rightarrow z = -E_1left(be^kright)$
So,
$$B=-tE_1left(be^kright)big|_{0}^{infty}+int_{0}^{infty}E_1left(be^kright)dk$$
where $E_1left(be^kright)$ is the exponential integral of $be^k$.
But now, I don't know where to go from here.
Any suggestion?
integration definite-integrals improper-integrals gamma-function
integration definite-integrals improper-integrals gamma-function
edited Jan 7 at 11:08
Harry Peter
5,54411439
5,54411439
asked Dec 28 '18 at 23:00
HarryHarry
22229
22229
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
begin{align}
A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
&= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
end{align}
Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:
begin{align}
A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
&= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
end{align}
$endgroup$
add a comment |
$begingroup$
The integral you call $A$ can be split into two integrals.
$$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$
The first one can be done by considering the series expansion
$$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
&= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$
and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion
$$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$
we have
$$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
&approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$
so
$$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$
The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)
$$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$
Consider
$$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$
where we are again finding the $epsilon^{2}$ coefficient. It follows that
$$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$
so
$$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055365%2fevaluate-integral-of-lnu-exp-bu-u-du%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
begin{align}
A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
&= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
end{align}
Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:
begin{align}
A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
&= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
end{align}
$endgroup$
add a comment |
$begingroup$
Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
begin{align}
A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
&= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
end{align}
Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:
begin{align}
A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
&= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
end{align}
$endgroup$
add a comment |
$begingroup$
Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
begin{align}
A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
&= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
end{align}
Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:
begin{align}
A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
&= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
end{align}
$endgroup$
Starting with $A$, and knowing that the constant of proportionality is $a^{-3}$, we can see that
begin{align}
A&=a^{-3}int_1^infty log^2 x, e^{-bx},dx \
&= a^{-3}frac{partial^2}{partial mu^2} int_1^infty x^{mu-1} e^{-bx},dx Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} int_b^infty z^{mu-1} e^{-z},dz Big|_{mu=1} \
&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} ,Gamma(mu, b) Big|_{mu=1}\
end{align}
Where $Gamma(mu, b)$ is the upper incomplete gamma function. Now, if you want to go further, we can use the lower incomplete gamma function and its series representation:
begin{align}
A&= a^{-3}frac{partial^2}{partial mu^2} b^{-mu} Big{ left( Gamma(mu)-gamma(mu, b)right)Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{ b^{-mu} Gamma(mu)-b^{-mu} gamma(mu, b) Big} Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2}Big{ b^{-mu} Gamma(mu)-b^{-mu} sum_{nge 0} frac{(-1)^n}{n!} frac{b^{mu+n}}{mu+n} Big}Big|_{mu=1}\
&= a^{-3}frac{partial^2}{partial mu^2} Big{b^{-mu} Gamma(mu)- sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{mu+n} Big} Big|_{mu=1}\
&= a^{-3}frac{log^2 b +2gammalog b +pi^2/6 + gamma^2}{b}- 2a^{-3}sum_{nge 0} frac{(-1)^n}{n!} frac{b^n}{(n+1)^3}\
end{align}
edited Dec 29 '18 at 2:08
answered Dec 29 '18 at 1:05
ZacharyZachary
2,3651314
2,3651314
add a comment |
add a comment |
$begingroup$
The integral you call $A$ can be split into two integrals.
$$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$
The first one can be done by considering the series expansion
$$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
&= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$
and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion
$$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$
we have
$$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
&approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$
so
$$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$
The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)
$$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$
Consider
$$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$
where we are again finding the $epsilon^{2}$ coefficient. It follows that
$$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$
so
$$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$
$endgroup$
add a comment |
$begingroup$
The integral you call $A$ can be split into two integrals.
$$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$
The first one can be done by considering the series expansion
$$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
&= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$
and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion
$$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$
we have
$$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
&approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$
so
$$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$
The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)
$$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$
Consider
$$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$
where we are again finding the $epsilon^{2}$ coefficient. It follows that
$$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$
so
$$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$
$endgroup$
add a comment |
$begingroup$
The integral you call $A$ can be split into two integrals.
$$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$
The first one can be done by considering the series expansion
$$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
&= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$
and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion
$$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$
we have
$$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
&approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$
so
$$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$
The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)
$$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$
Consider
$$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$
where we are again finding the $epsilon^{2}$ coefficient. It follows that
$$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$
so
$$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$
$endgroup$
The integral you call $A$ can be split into two integrals.
$$ A = frac{1}{a^{3}}int_{1}^{infty}ln^{2}t,e^{-bt},mathrm{d}t = frac{1}{a^{3}}left[int_{0}^{infty}ln^{2}t,e^{-bt},mathrm{d}t - int_{0}^{1}ln^{2}t, e^{-bt},mathrm{d}tright] = frac{1}{a^{3}}(A_{1} - A_{2}) $$
The first one can be done by considering the series expansion
$$begin{aligned} int_{0}^{infty}t^{epsilon}e^{-bt},mathrm{d}t &= sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{infty}ln^{n}t,e^{-bt},mathrm{d}t \
&= frac{1}{b^{1+epsilon}}int_{0}^{infty}t^{epsilon}e^{-t},mathrm{d}t = frac{Gamma(1+epsilon)}{b^{1+epsilon}}end{aligned}$$
and expanding the latter term to second order in $epsilon$. The integral will then be $2! = 2$ times the coefficient of the $epsilon^{2}$ term to compensate for the factorial. Using the Taylor expansion
$$ lnGamma(1+epsilon) = -gammaepsilon + sum_{k=2}^{infty}frac{(-1)^{k}zeta(k)}{k}epsilon^{k},$$
we have
$$begin{aligned} frac{Gamma(1+epsilon)}{b^{1+epsilon}} &approx frac{e^{-gammaepsilon + frac{zeta(2)}{2}epsilon^{2}}}{be^{epsilonln b}}
approx frac{1}{b}left(1 - epsilonln b + frac{ln^{2}b}{2}epsilon^{2}right)left(1 - gammaepsilon + frac{zeta(2)}{2}epsilon^{2} + frac{gamma^{2}}{2}epsilon^{2}right) \
&approx frac{1}{b}left(1 + left(-gamma - ln bright)epsilon +left(frac{zeta(2)}{2} + frac{gamma^{2}}{2} + gammaln b + frac{ln^{2}b}{2}right)epsilon^{2}right)end{aligned}$$
so
$$ A_{1} = frac{1}{b}left(zeta(2) + gamma^{2} + 2gammaln b + ln^{2}bright). $$
The second integral can be done using series again, but I am not sure if it has a nice expression. I write it in terms of hypergeometric functions. The Taylor series of the exponential is used. (Note I can switch sum and integral because $int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t$ certainly converges for any whole number $k$, as the divergence of $ln^{2}t$ is weak)
$$ A_{2} = int_{0}^{1}ln^{2}t,sum_{k=0}^{infty}frac{(-1)^{k}b^{k}t^{k}}{k!},mathrm{d}t = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t $$
Consider
$$ int_{0}^{1}t^{k+epsilon},mathrm{d}t = sum_{n=0}^{infty}frac{epsilon^{n}}{n!}int_{0}^{1}t^{k}ln^{n}t,mathrm{d}t = frac{1}{k+epsilon+1}$$
where we are again finding the $epsilon^{2}$ coefficient. It follows that
$$ frac{1}{1+k+epsilon} = frac{1}{1+k}frac{1}{1+frac{epsilon}{1+k}} = frac{1}{1+k}sum_{j=0}^{infty}(-1)^{j}left(frac{epsilon}{1+k}right)^{j}$$
so
$$ int_{0}^{1}t^{k}ln^{2}t,mathrm{d}t = frac{2}{(1+k)^{3}} quadtoquad A_{2} = sum_{k=0}^{infty}frac{(-1)^{k}b^{k}}{k!}frac{2}{(1+k)^{3}} = 2,{}_{3}F_{3}(1,1,1;2,2,2;-b).$$
edited Dec 29 '18 at 3:12
answered Dec 29 '18 at 0:43
IninterrompueIninterrompue
69019
69019
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055365%2fevaluate-integral-of-lnu-exp-bu-u-du%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown