Simplifying addition of polar complex conjugate exponents in the denominator
up vote
0
down vote
favorite
From Schuam’s Outlines, Digital Signal Processing, Second Edition, 2012, page 44:
Book claims that solving this system of equations:
$$left[begin{matrix}1&1\e^{i pi/3}&e^{-i pi/3}\end{matrix}right]left[begin{matrix}A\B\end{matrix}right]=left[begin{matrix}0.5\0.75\end{matrix}right]$$
Yields:
$$left[begin{matrix}A\B\end{matrix}right]=ifrac{sqrt3}{3}left[begin{matrix}frac{1}{2}e^{-i pi/3}-frac{3}{4}\-frac{1}{2}e^{i pi/3}+frac{3}{4}\end{matrix}right]$$
I’m curious about the technique used to deal with the “complex conjugates” such that it yeilds that result of the book. When I try it, I get stuck when it comes to similfying the numerator and denominator down to book’s solution.
For Example:
$$A=0.5 – B$$
$${A e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$${(0.5-B) e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})-B (e^{i pi/3}) + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})+(B)left(- e^{i pi/3} + e^{-i pi/3} right)=0.75$$
$$Bleft( e^{-i pi/3}- e^{i pi/3}right)=0.75 - (0.5)(e^{i pi/3})$$
$$B=frac{0.75 -(0.5)(e^{i pi/3})}{e^{-i pi/3}- e^{i pi/3}}$$
(At this point, I’m thinking that I need to multiply the numerator and denominator by the complex conjugate of the denominator to remove the complex portion from the denominator… however, I’m not really sure…is there some short cut you an take to handle this all in polar form?)
How can I convert my result for B into the result the book claims:
$$B=ifrac{sqrt3}{3}left(-frac{1}{2}e^{jpi/3}+frac{3}{4}right)$$
complex-numbers systems-of-equations polar-coordinates
add a comment |
up vote
0
down vote
favorite
From Schuam’s Outlines, Digital Signal Processing, Second Edition, 2012, page 44:
Book claims that solving this system of equations:
$$left[begin{matrix}1&1\e^{i pi/3}&e^{-i pi/3}\end{matrix}right]left[begin{matrix}A\B\end{matrix}right]=left[begin{matrix}0.5\0.75\end{matrix}right]$$
Yields:
$$left[begin{matrix}A\B\end{matrix}right]=ifrac{sqrt3}{3}left[begin{matrix}frac{1}{2}e^{-i pi/3}-frac{3}{4}\-frac{1}{2}e^{i pi/3}+frac{3}{4}\end{matrix}right]$$
I’m curious about the technique used to deal with the “complex conjugates” such that it yeilds that result of the book. When I try it, I get stuck when it comes to similfying the numerator and denominator down to book’s solution.
For Example:
$$A=0.5 – B$$
$${A e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$${(0.5-B) e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})-B (e^{i pi/3}) + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})+(B)left(- e^{i pi/3} + e^{-i pi/3} right)=0.75$$
$$Bleft( e^{-i pi/3}- e^{i pi/3}right)=0.75 - (0.5)(e^{i pi/3})$$
$$B=frac{0.75 -(0.5)(e^{i pi/3})}{e^{-i pi/3}- e^{i pi/3}}$$
(At this point, I’m thinking that I need to multiply the numerator and denominator by the complex conjugate of the denominator to remove the complex portion from the denominator… however, I’m not really sure…is there some short cut you an take to handle this all in polar form?)
How can I convert my result for B into the result the book claims:
$$B=ifrac{sqrt3}{3}left(-frac{1}{2}e^{jpi/3}+frac{3}{4}right)$$
complex-numbers systems-of-equations polar-coordinates
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
From Schuam’s Outlines, Digital Signal Processing, Second Edition, 2012, page 44:
Book claims that solving this system of equations:
$$left[begin{matrix}1&1\e^{i pi/3}&e^{-i pi/3}\end{matrix}right]left[begin{matrix}A\B\end{matrix}right]=left[begin{matrix}0.5\0.75\end{matrix}right]$$
Yields:
$$left[begin{matrix}A\B\end{matrix}right]=ifrac{sqrt3}{3}left[begin{matrix}frac{1}{2}e^{-i pi/3}-frac{3}{4}\-frac{1}{2}e^{i pi/3}+frac{3}{4}\end{matrix}right]$$
I’m curious about the technique used to deal with the “complex conjugates” such that it yeilds that result of the book. When I try it, I get stuck when it comes to similfying the numerator and denominator down to book’s solution.
For Example:
$$A=0.5 – B$$
$${A e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$${(0.5-B) e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})-B (e^{i pi/3}) + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})+(B)left(- e^{i pi/3} + e^{-i pi/3} right)=0.75$$
$$Bleft( e^{-i pi/3}- e^{i pi/3}right)=0.75 - (0.5)(e^{i pi/3})$$
$$B=frac{0.75 -(0.5)(e^{i pi/3})}{e^{-i pi/3}- e^{i pi/3}}$$
(At this point, I’m thinking that I need to multiply the numerator and denominator by the complex conjugate of the denominator to remove the complex portion from the denominator… however, I’m not really sure…is there some short cut you an take to handle this all in polar form?)
How can I convert my result for B into the result the book claims:
$$B=ifrac{sqrt3}{3}left(-frac{1}{2}e^{jpi/3}+frac{3}{4}right)$$
complex-numbers systems-of-equations polar-coordinates
From Schuam’s Outlines, Digital Signal Processing, Second Edition, 2012, page 44:
Book claims that solving this system of equations:
$$left[begin{matrix}1&1\e^{i pi/3}&e^{-i pi/3}\end{matrix}right]left[begin{matrix}A\B\end{matrix}right]=left[begin{matrix}0.5\0.75\end{matrix}right]$$
Yields:
$$left[begin{matrix}A\B\end{matrix}right]=ifrac{sqrt3}{3}left[begin{matrix}frac{1}{2}e^{-i pi/3}-frac{3}{4}\-frac{1}{2}e^{i pi/3}+frac{3}{4}\end{matrix}right]$$
I’m curious about the technique used to deal with the “complex conjugates” such that it yeilds that result of the book. When I try it, I get stuck when it comes to similfying the numerator and denominator down to book’s solution.
For Example:
$$A=0.5 – B$$
$${A e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$${(0.5-B) e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})-B (e^{i pi/3}) + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})+(B)left(- e^{i pi/3} + e^{-i pi/3} right)=0.75$$
$$Bleft( e^{-i pi/3}- e^{i pi/3}right)=0.75 - (0.5)(e^{i pi/3})$$
$$B=frac{0.75 -(0.5)(e^{i pi/3})}{e^{-i pi/3}- e^{i pi/3}}$$
(At this point, I’m thinking that I need to multiply the numerator and denominator by the complex conjugate of the denominator to remove the complex portion from the denominator… however, I’m not really sure…is there some short cut you an take to handle this all in polar form?)
How can I convert my result for B into the result the book claims:
$$B=ifrac{sqrt3}{3}left(-frac{1}{2}e^{jpi/3}+frac{3}{4}right)$$
complex-numbers systems-of-equations polar-coordinates
complex-numbers systems-of-equations polar-coordinates
asked Nov 18 at 17:41
Bill Moore
1176
1176
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives
$$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$
Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
$$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$
Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
$e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
$$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives
$$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$
Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
$$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$
Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
$e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
$$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$
add a comment |
up vote
1
down vote
accepted
Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives
$$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$
Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
$$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$
Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
$e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
$$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives
$$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$
Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
$$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$
Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
$e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
$$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$
Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives
$$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$
Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
$$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$
Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
$e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
$$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$
edited Nov 18 at 21:53
answered Nov 18 at 21:45
Ramiro Scorolli
60313
60313
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003845%2fsimplifying-addition-of-polar-complex-conjugate-exponents-in-the-denominator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown