Find the ratio of the area of the region bounded by the parabola and the line segment $PQ$ to the area of...












0














For the parabola $y=-x^2$,let $a<0,b>0,$ $P(a,-a^2),Q(b,-b^2)$.Let $M$ be the mid point of $PQ$ and $R$ be the point of intersection of the vertical line through $M,$ with the parabola.Find the ratio of the area of the region bounded by the parabola and the line segment $PQ$ to the area of triangle $PQR$





By integration,i found the area of the region bounded by the parabola and the line segment $PQ=frac{-1}{3}(a^3-b^3)$ and the point $R=(frac{a+b}{2},-(frac{a+b}{2})^2)$

I am stuck here.










share|cite|improve this question



























    0














    For the parabola $y=-x^2$,let $a<0,b>0,$ $P(a,-a^2),Q(b,-b^2)$.Let $M$ be the mid point of $PQ$ and $R$ be the point of intersection of the vertical line through $M,$ with the parabola.Find the ratio of the area of the region bounded by the parabola and the line segment $PQ$ to the area of triangle $PQR$





    By integration,i found the area of the region bounded by the parabola and the line segment $PQ=frac{-1}{3}(a^3-b^3)$ and the point $R=(frac{a+b}{2},-(frac{a+b}{2})^2)$

    I am stuck here.










    share|cite|improve this question

























      0












      0








      0







      For the parabola $y=-x^2$,let $a<0,b>0,$ $P(a,-a^2),Q(b,-b^2)$.Let $M$ be the mid point of $PQ$ and $R$ be the point of intersection of the vertical line through $M,$ with the parabola.Find the ratio of the area of the region bounded by the parabola and the line segment $PQ$ to the area of triangle $PQR$





      By integration,i found the area of the region bounded by the parabola and the line segment $PQ=frac{-1}{3}(a^3-b^3)$ and the point $R=(frac{a+b}{2},-(frac{a+b}{2})^2)$

      I am stuck here.










      share|cite|improve this question













      For the parabola $y=-x^2$,let $a<0,b>0,$ $P(a,-a^2),Q(b,-b^2)$.Let $M$ be the mid point of $PQ$ and $R$ be the point of intersection of the vertical line through $M,$ with the parabola.Find the ratio of the area of the region bounded by the parabola and the line segment $PQ$ to the area of triangle $PQR$





      By integration,i found the area of the region bounded by the parabola and the line segment $PQ=frac{-1}{3}(a^3-b^3)$ and the point $R=(frac{a+b}{2},-(frac{a+b}{2})^2)$

      I am stuck here.







      conic-sections






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 26 at 13:16









      user984325

      19112




      19112






















          1 Answer
          1






          active

          oldest

          votes


















          0














          If $H$ is the projection of $P$ on line $RM$ and $K$ is the projection of $Q$ on line $RM$, then the area of triangle $PQR$ is given by
          $$
          A_{PQR}={1over2}RMcdot PH+{1over2}RMcdot QK
          ={1over2}RMcdot (b-a).
          $$

          Hence you only need to compute
          $displaystyle RM={a^2+b^2over2}-left({a+bover2}right)^2$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014321%2ffind-the-ratio-of-the-area-of-the-region-bounded-by-the-parabola-and-the-line-se%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            If $H$ is the projection of $P$ on line $RM$ and $K$ is the projection of $Q$ on line $RM$, then the area of triangle $PQR$ is given by
            $$
            A_{PQR}={1over2}RMcdot PH+{1over2}RMcdot QK
            ={1over2}RMcdot (b-a).
            $$

            Hence you only need to compute
            $displaystyle RM={a^2+b^2over2}-left({a+bover2}right)^2$.






            share|cite|improve this answer


























              0














              If $H$ is the projection of $P$ on line $RM$ and $K$ is the projection of $Q$ on line $RM$, then the area of triangle $PQR$ is given by
              $$
              A_{PQR}={1over2}RMcdot PH+{1over2}RMcdot QK
              ={1over2}RMcdot (b-a).
              $$

              Hence you only need to compute
              $displaystyle RM={a^2+b^2over2}-left({a+bover2}right)^2$.






              share|cite|improve this answer
























                0












                0








                0






                If $H$ is the projection of $P$ on line $RM$ and $K$ is the projection of $Q$ on line $RM$, then the area of triangle $PQR$ is given by
                $$
                A_{PQR}={1over2}RMcdot PH+{1over2}RMcdot QK
                ={1over2}RMcdot (b-a).
                $$

                Hence you only need to compute
                $displaystyle RM={a^2+b^2over2}-left({a+bover2}right)^2$.






                share|cite|improve this answer












                If $H$ is the projection of $P$ on line $RM$ and $K$ is the projection of $Q$ on line $RM$, then the area of triangle $PQR$ is given by
                $$
                A_{PQR}={1over2}RMcdot PH+{1over2}RMcdot QK
                ={1over2}RMcdot (b-a).
                $$

                Hence you only need to compute
                $displaystyle RM={a^2+b^2over2}-left({a+bover2}right)^2$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 26 at 17:06









                Aretino

                22.6k21442




                22.6k21442






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014321%2ffind-the-ratio-of-the-area-of-the-region-bounded-by-the-parabola-and-the-line-se%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten