GLR Test for 2 samples from exponential distributions












0












$begingroup$


I am trying to solve this complicated Generalised Likelihood Ratio Test problem for 2 samples as part of my independent study course. However, the book that I am using does not talk about 2 samples at all; all the examples provided are 1 sample questions.



The question:




Assume that $X_1, ...,X_m$ is a random sample from $theta_1e^{-theta_1x}I_{(0,infty)}(x)$ and $Y_1, ...,Y_n$ is a random sample from $theta_2e^{-theta_2y}I_{(0,infty)}(y)$. If we assume the samples are independent. What is the GLR for testing
$H_0:theta_1=theta_2$ vs. $H_0:theta_1netheta_2$?




So far I just got to $$Lambda=frac{L(theta,theta)}{L(theta_1,theta_2)}=frac{theta^{m+n}exp[-thetasum x_i+sum y_i]}{theta_1^mexp[-theta_1sum x_i]theta_2^n exp[-theta_2sum y_i]}$$



However, I don't know what I should do for the next step. They say it should be an F test but I just can't see it.



I appreciate your time and help!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Previously asked: math.stackexchange.com/questions/47063/….
    $endgroup$
    – StubbornAtom
    Dec 6 '18 at 13:36
















0












$begingroup$


I am trying to solve this complicated Generalised Likelihood Ratio Test problem for 2 samples as part of my independent study course. However, the book that I am using does not talk about 2 samples at all; all the examples provided are 1 sample questions.



The question:




Assume that $X_1, ...,X_m$ is a random sample from $theta_1e^{-theta_1x}I_{(0,infty)}(x)$ and $Y_1, ...,Y_n$ is a random sample from $theta_2e^{-theta_2y}I_{(0,infty)}(y)$. If we assume the samples are independent. What is the GLR for testing
$H_0:theta_1=theta_2$ vs. $H_0:theta_1netheta_2$?




So far I just got to $$Lambda=frac{L(theta,theta)}{L(theta_1,theta_2)}=frac{theta^{m+n}exp[-thetasum x_i+sum y_i]}{theta_1^mexp[-theta_1sum x_i]theta_2^n exp[-theta_2sum y_i]}$$



However, I don't know what I should do for the next step. They say it should be an F test but I just can't see it.



I appreciate your time and help!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Previously asked: math.stackexchange.com/questions/47063/….
    $endgroup$
    – StubbornAtom
    Dec 6 '18 at 13:36














0












0








0


0



$begingroup$


I am trying to solve this complicated Generalised Likelihood Ratio Test problem for 2 samples as part of my independent study course. However, the book that I am using does not talk about 2 samples at all; all the examples provided are 1 sample questions.



The question:




Assume that $X_1, ...,X_m$ is a random sample from $theta_1e^{-theta_1x}I_{(0,infty)}(x)$ and $Y_1, ...,Y_n$ is a random sample from $theta_2e^{-theta_2y}I_{(0,infty)}(y)$. If we assume the samples are independent. What is the GLR for testing
$H_0:theta_1=theta_2$ vs. $H_0:theta_1netheta_2$?




So far I just got to $$Lambda=frac{L(theta,theta)}{L(theta_1,theta_2)}=frac{theta^{m+n}exp[-thetasum x_i+sum y_i]}{theta_1^mexp[-theta_1sum x_i]theta_2^n exp[-theta_2sum y_i]}$$



However, I don't know what I should do for the next step. They say it should be an F test but I just can't see it.



I appreciate your time and help!










share|cite|improve this question











$endgroup$




I am trying to solve this complicated Generalised Likelihood Ratio Test problem for 2 samples as part of my independent study course. However, the book that I am using does not talk about 2 samples at all; all the examples provided are 1 sample questions.



The question:




Assume that $X_1, ...,X_m$ is a random sample from $theta_1e^{-theta_1x}I_{(0,infty)}(x)$ and $Y_1, ...,Y_n$ is a random sample from $theta_2e^{-theta_2y}I_{(0,infty)}(y)$. If we assume the samples are independent. What is the GLR for testing
$H_0:theta_1=theta_2$ vs. $H_0:theta_1netheta_2$?




So far I just got to $$Lambda=frac{L(theta,theta)}{L(theta_1,theta_2)}=frac{theta^{m+n}exp[-thetasum x_i+sum y_i]}{theta_1^mexp[-theta_1sum x_i]theta_2^n exp[-theta_2sum y_i]}$$



However, I don't know what I should do for the next step. They say it should be an F test but I just can't see it.



I appreciate your time and help!







statistics probability-distributions statistical-inference hypothesis-testing






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 6 '18 at 12:25









StubbornAtom

5,77111138




5,77111138










asked Dec 5 '18 at 21:52









S AS A

1




1












  • $begingroup$
    Previously asked: math.stackexchange.com/questions/47063/….
    $endgroup$
    – StubbornAtom
    Dec 6 '18 at 13:36


















  • $begingroup$
    Previously asked: math.stackexchange.com/questions/47063/….
    $endgroup$
    – StubbornAtom
    Dec 6 '18 at 13:36
















$begingroup$
Previously asked: math.stackexchange.com/questions/47063/….
$endgroup$
– StubbornAtom
Dec 6 '18 at 13:36




$begingroup$
Previously asked: math.stackexchange.com/questions/47063/….
$endgroup$
– StubbornAtom
Dec 6 '18 at 13:36










1 Answer
1






active

oldest

votes


















1












$begingroup$

The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is



$$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$



Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$



Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is



$$hattheta=frac{m+n}{mbar x+nbar y}$$



So the LR test statistic for testing $H_0$ is



$$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$



Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get



$$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$



The above can be rewritten to get a 'nice' form:



begin{align}
Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
\&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
\&=g(t)quad,,text{say}
end{align}



Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.



As for why this should be an $F$ test, note that



$$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$



So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$



Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$



And since both samples are independent, our test statistic is



$$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027702%2fglr-test-for-2-samples-from-exponential-distributions%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is



    $$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$



    Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$



    Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is



    $$hattheta=frac{m+n}{mbar x+nbar y}$$



    So the LR test statistic for testing $H_0$ is



    $$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$



    Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get



    $$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$



    The above can be rewritten to get a 'nice' form:



    begin{align}
    Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
    \&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
    \&=g(t)quad,,text{say}
    end{align}



    Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.



    As for why this should be an $F$ test, note that



    $$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$



    So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$



    Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$



    And since both samples are independent, our test statistic is



    $$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is



      $$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$



      Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$



      Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is



      $$hattheta=frac{m+n}{mbar x+nbar y}$$



      So the LR test statistic for testing $H_0$ is



      $$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$



      Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get



      $$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$



      The above can be rewritten to get a 'nice' form:



      begin{align}
      Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
      \&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
      \&=g(t)quad,,text{say}
      end{align}



      Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.



      As for why this should be an $F$ test, note that



      $$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$



      So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$



      Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$



      And since both samples are independent, our test statistic is



      $$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is



        $$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$



        Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$



        Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is



        $$hattheta=frac{m+n}{mbar x+nbar y}$$



        So the LR test statistic for testing $H_0$ is



        $$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$



        Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get



        $$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$



        The above can be rewritten to get a 'nice' form:



        begin{align}
        Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
        \&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
        \&=g(t)quad,,text{say}
        end{align}



        Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.



        As for why this should be an $F$ test, note that



        $$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$



        So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$



        Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$



        And since both samples are independent, our test statistic is



        $$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$






        share|cite|improve this answer









        $endgroup$



        The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is



        $$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$



        Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$



        Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is



        $$hattheta=frac{m+n}{mbar x+nbar y}$$



        So the LR test statistic for testing $H_0$ is



        $$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$



        Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get



        $$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$



        The above can be rewritten to get a 'nice' form:



        begin{align}
        Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
        \&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
        \&=g(t)quad,,text{say}
        end{align}



        Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.



        As for why this should be an $F$ test, note that



        $$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$



        So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$



        Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$



        And since both samples are independent, our test statistic is



        $$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 6 '18 at 13:33









        StubbornAtomStubbornAtom

        5,77111138




        5,77111138






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027702%2fglr-test-for-2-samples-from-exponential-distributions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten