GLR Test for 2 samples from exponential distributions
$begingroup$
I am trying to solve this complicated Generalised Likelihood Ratio Test problem for 2 samples as part of my independent study course. However, the book that I am using does not talk about 2 samples at all; all the examples provided are 1 sample questions.
The question:
Assume that $X_1, ...,X_m$ is a random sample from $theta_1e^{-theta_1x}I_{(0,infty)}(x)$ and $Y_1, ...,Y_n$ is a random sample from $theta_2e^{-theta_2y}I_{(0,infty)}(y)$. If we assume the samples are independent. What is the GLR for testing
$H_0:theta_1=theta_2$ vs. $H_0:theta_1netheta_2$?
So far I just got to $$Lambda=frac{L(theta,theta)}{L(theta_1,theta_2)}=frac{theta^{m+n}exp[-thetasum x_i+sum y_i]}{theta_1^mexp[-theta_1sum x_i]theta_2^n exp[-theta_2sum y_i]}$$
However, I don't know what I should do for the next step. They say it should be an F test but I just can't see it.
I appreciate your time and help!
statistics probability-distributions statistical-inference hypothesis-testing
$endgroup$
add a comment |
$begingroup$
I am trying to solve this complicated Generalised Likelihood Ratio Test problem for 2 samples as part of my independent study course. However, the book that I am using does not talk about 2 samples at all; all the examples provided are 1 sample questions.
The question:
Assume that $X_1, ...,X_m$ is a random sample from $theta_1e^{-theta_1x}I_{(0,infty)}(x)$ and $Y_1, ...,Y_n$ is a random sample from $theta_2e^{-theta_2y}I_{(0,infty)}(y)$. If we assume the samples are independent. What is the GLR for testing
$H_0:theta_1=theta_2$ vs. $H_0:theta_1netheta_2$?
So far I just got to $$Lambda=frac{L(theta,theta)}{L(theta_1,theta_2)}=frac{theta^{m+n}exp[-thetasum x_i+sum y_i]}{theta_1^mexp[-theta_1sum x_i]theta_2^n exp[-theta_2sum y_i]}$$
However, I don't know what I should do for the next step. They say it should be an F test but I just can't see it.
I appreciate your time and help!
statistics probability-distributions statistical-inference hypothesis-testing
$endgroup$
$begingroup$
Previously asked: math.stackexchange.com/questions/47063/….
$endgroup$
– StubbornAtom
Dec 6 '18 at 13:36
add a comment |
$begingroup$
I am trying to solve this complicated Generalised Likelihood Ratio Test problem for 2 samples as part of my independent study course. However, the book that I am using does not talk about 2 samples at all; all the examples provided are 1 sample questions.
The question:
Assume that $X_1, ...,X_m$ is a random sample from $theta_1e^{-theta_1x}I_{(0,infty)}(x)$ and $Y_1, ...,Y_n$ is a random sample from $theta_2e^{-theta_2y}I_{(0,infty)}(y)$. If we assume the samples are independent. What is the GLR for testing
$H_0:theta_1=theta_2$ vs. $H_0:theta_1netheta_2$?
So far I just got to $$Lambda=frac{L(theta,theta)}{L(theta_1,theta_2)}=frac{theta^{m+n}exp[-thetasum x_i+sum y_i]}{theta_1^mexp[-theta_1sum x_i]theta_2^n exp[-theta_2sum y_i]}$$
However, I don't know what I should do for the next step. They say it should be an F test but I just can't see it.
I appreciate your time and help!
statistics probability-distributions statistical-inference hypothesis-testing
$endgroup$
I am trying to solve this complicated Generalised Likelihood Ratio Test problem for 2 samples as part of my independent study course. However, the book that I am using does not talk about 2 samples at all; all the examples provided are 1 sample questions.
The question:
Assume that $X_1, ...,X_m$ is a random sample from $theta_1e^{-theta_1x}I_{(0,infty)}(x)$ and $Y_1, ...,Y_n$ is a random sample from $theta_2e^{-theta_2y}I_{(0,infty)}(y)$. If we assume the samples are independent. What is the GLR for testing
$H_0:theta_1=theta_2$ vs. $H_0:theta_1netheta_2$?
So far I just got to $$Lambda=frac{L(theta,theta)}{L(theta_1,theta_2)}=frac{theta^{m+n}exp[-thetasum x_i+sum y_i]}{theta_1^mexp[-theta_1sum x_i]theta_2^n exp[-theta_2sum y_i]}$$
However, I don't know what I should do for the next step. They say it should be an F test but I just can't see it.
I appreciate your time and help!
statistics probability-distributions statistical-inference hypothesis-testing
statistics probability-distributions statistical-inference hypothesis-testing
edited Dec 6 '18 at 12:25
StubbornAtom
5,77111138
5,77111138
asked Dec 5 '18 at 21:52
S AS A
1
1
$begingroup$
Previously asked: math.stackexchange.com/questions/47063/….
$endgroup$
– StubbornAtom
Dec 6 '18 at 13:36
add a comment |
$begingroup$
Previously asked: math.stackexchange.com/questions/47063/….
$endgroup$
– StubbornAtom
Dec 6 '18 at 13:36
$begingroup$
Previously asked: math.stackexchange.com/questions/47063/….
$endgroup$
– StubbornAtom
Dec 6 '18 at 13:36
$begingroup$
Previously asked: math.stackexchange.com/questions/47063/….
$endgroup$
– StubbornAtom
Dec 6 '18 at 13:36
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is
$$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$
Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$
Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is
$$hattheta=frac{m+n}{mbar x+nbar y}$$
So the LR test statistic for testing $H_0$ is
$$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$
Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get
$$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$
The above can be rewritten to get a 'nice' form:
begin{align}
Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
\&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
\&=g(t)quad,,text{say}
end{align}
Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.
As for why this should be an $F$ test, note that
$$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$
So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$
Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$
And since both samples are independent, our test statistic is
$$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027702%2fglr-test-for-2-samples-from-exponential-distributions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is
$$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$
Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$
Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is
$$hattheta=frac{m+n}{mbar x+nbar y}$$
So the LR test statistic for testing $H_0$ is
$$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$
Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get
$$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$
The above can be rewritten to get a 'nice' form:
begin{align}
Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
\&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
\&=g(t)quad,,text{say}
end{align}
Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.
As for why this should be an $F$ test, note that
$$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$
So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$
Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$
And since both samples are independent, our test statistic is
$$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$
$endgroup$
add a comment |
$begingroup$
The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is
$$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$
Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$
Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is
$$hattheta=frac{m+n}{mbar x+nbar y}$$
So the LR test statistic for testing $H_0$ is
$$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$
Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get
$$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$
The above can be rewritten to get a 'nice' form:
begin{align}
Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
\&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
\&=g(t)quad,,text{say}
end{align}
Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.
As for why this should be an $F$ test, note that
$$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$
So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$
Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$
And since both samples are independent, our test statistic is
$$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$
$endgroup$
add a comment |
$begingroup$
The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is
$$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$
Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$
Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is
$$hattheta=frac{m+n}{mbar x+nbar y}$$
So the LR test statistic for testing $H_0$ is
$$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$
Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get
$$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$
The above can be rewritten to get a 'nice' form:
begin{align}
Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
\&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
\&=g(t)quad,,text{say}
end{align}
Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.
As for why this should be an $F$ test, note that
$$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$
So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$
Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$
And since both samples are independent, our test statistic is
$$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$
$endgroup$
The likelihood function given the sample $mathbf x=(x_1,ldots,x_m,y_1,ldots,y_n)$ is
$$L(theta_1,theta_2)=theta_1^mtheta_2^nexpleft(-theta_1sum_{i=1}^m x_i-theta_2sum_{i=1}^n y_iright)mathbf1_{x_1,ldots,x_m,y_1,ldots,y_n>0}quad,,theta_1,theta_2>0$$
Unrestricted MLE of $(theta_1,theta_2)$ is $$(hattheta_1,hattheta_2)=left(frac{1}{bar x},frac{1}{bar y}right)$$
Restricted MLE of $(theta_1,theta_2)$ when $theta_1=theta_2=theta$ (say) is
$$hattheta=frac{m+n}{mbar x+nbar y}$$
So the LR test statistic for testing $H_0$ is
$$Lambda(mathbf x)=frac{sup_{theta_1=theta_2}L(theta_1,theta_2)}{sup_{theta_1,theta_2}L(theta_1,theta_2)}=frac{L(hattheta,hattheta)}{L(hattheta_1,hattheta_2)}$$
Substituting the values of $hattheta_1,hattheta_2,hattheta$, the terms in the exponent of $e$ vanish, and I get
$$Lambda(mathbf x)=bar x^mbar y^nleft(frac{m+n}{mbar x+nbar y}right)^{m+n}$$
The above can be rewritten to get a 'nice' form:
begin{align}
Lambda(mathbf x)&=underbrace{text{constant}}_{>0}left(frac{mbar x}{mbar x+nbar y}right)^mleft(frac{nbar y}{mbar x+nbar y}right)^n
\&=text{constant}cdot,t^m(1-t)^nqquad,text{ where }t=frac{mbar x}{mbar x+nbar y}
\&=g(t)quad,,text{say}
end{align}
Now you have to study the nature of the function $g$, keeping in mind that we reject $H_0$ when $Lambda(mathbf x)<c$ for some $c$ subject to a level restriction.
As for why this should be an $F$ test, note that
$$X_istackrel{text{ i.i.d }}simtext{Exp with mean }1/theta_1implies 2theta_1 X_istackrel{text{ i.i.d }}simtext{Exp with mean }2equiv chi^2_2$$
So summing over independent chi-square variables, $$2mtheta_1overline Xsimchi^2_{2m}$$
Similarly, $$2ntheta_2overline Ysimchi^2_{2n}$$
And since both samples are independent, our test statistic is
$$frac{theta_1overline X}{theta_2overline Y}sim F_{2m,2n}$$
answered Dec 6 '18 at 13:33
StubbornAtomStubbornAtom
5,77111138
5,77111138
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027702%2fglr-test-for-2-samples-from-exponential-distributions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Previously asked: math.stackexchange.com/questions/47063/….
$endgroup$
– StubbornAtom
Dec 6 '18 at 13:36