chern class of bundle in Blochs “Cycles on arithmetic schemes”
$begingroup$
In Blochs "Cycles on arithmetic schemes and Euler characteristics of curves" he defines the bivariant chern class for bundles on a scheme.
Now I wanted to calculate a bivariant chern class with $n=1$ for what I need to calculate the first chern class $c_1(xi)$, where $$xi=pr_0^*xi_0-pr_1^*xi_1=Gtimes_{G_0} E_0-Gtimes_G xi_1=Gtimes_Y E_0-xi_1$$
for the canonical rank-$e_i$-subbundles $xi_0=E_0$ and $xi_1$.
Question: How can I find a more explicit (as explicit as possible) representation of $c_1(xi$)? I want to calculate $deg(c_1(xi))$.
Any hint can help!
I read parts of Fultons "Intersection theory", where Fulton defines the bivariant chern class in a slightly more general setting, but it did not help that much.
(Notation: He considers a scheme Y of finite type over a regular noetherian base, a closed subscheme $Xsubset Y$, a two-term-complex $E_1rightarrow E_0$ of vector bundles and $e_i=rk(E_i)$. $G=Grass_{e_1}(E_1oplus E_0)$ is the Grassmannian of rank-$e_1$-subbundles of $E_1oplus E_0$, $pr_0:Grightarrow G_0=Grass_{e_0}(E_0)=Y$ the structure map and $pr_1=id:Grightarrow G$.)
characteristic-classes algebraic-vector-bundles
$endgroup$
add a comment |
$begingroup$
In Blochs "Cycles on arithmetic schemes and Euler characteristics of curves" he defines the bivariant chern class for bundles on a scheme.
Now I wanted to calculate a bivariant chern class with $n=1$ for what I need to calculate the first chern class $c_1(xi)$, where $$xi=pr_0^*xi_0-pr_1^*xi_1=Gtimes_{G_0} E_0-Gtimes_G xi_1=Gtimes_Y E_0-xi_1$$
for the canonical rank-$e_i$-subbundles $xi_0=E_0$ and $xi_1$.
Question: How can I find a more explicit (as explicit as possible) representation of $c_1(xi$)? I want to calculate $deg(c_1(xi))$.
Any hint can help!
I read parts of Fultons "Intersection theory", where Fulton defines the bivariant chern class in a slightly more general setting, but it did not help that much.
(Notation: He considers a scheme Y of finite type over a regular noetherian base, a closed subscheme $Xsubset Y$, a two-term-complex $E_1rightarrow E_0$ of vector bundles and $e_i=rk(E_i)$. $G=Grass_{e_1}(E_1oplus E_0)$ is the Grassmannian of rank-$e_1$-subbundles of $E_1oplus E_0$, $pr_0:Grightarrow G_0=Grass_{e_0}(E_0)=Y$ the structure map and $pr_1=id:Grightarrow G$.)
characteristic-classes algebraic-vector-bundles
$endgroup$
add a comment |
$begingroup$
In Blochs "Cycles on arithmetic schemes and Euler characteristics of curves" he defines the bivariant chern class for bundles on a scheme.
Now I wanted to calculate a bivariant chern class with $n=1$ for what I need to calculate the first chern class $c_1(xi)$, where $$xi=pr_0^*xi_0-pr_1^*xi_1=Gtimes_{G_0} E_0-Gtimes_G xi_1=Gtimes_Y E_0-xi_1$$
for the canonical rank-$e_i$-subbundles $xi_0=E_0$ and $xi_1$.
Question: How can I find a more explicit (as explicit as possible) representation of $c_1(xi$)? I want to calculate $deg(c_1(xi))$.
Any hint can help!
I read parts of Fultons "Intersection theory", where Fulton defines the bivariant chern class in a slightly more general setting, but it did not help that much.
(Notation: He considers a scheme Y of finite type over a regular noetherian base, a closed subscheme $Xsubset Y$, a two-term-complex $E_1rightarrow E_0$ of vector bundles and $e_i=rk(E_i)$. $G=Grass_{e_1}(E_1oplus E_0)$ is the Grassmannian of rank-$e_1$-subbundles of $E_1oplus E_0$, $pr_0:Grightarrow G_0=Grass_{e_0}(E_0)=Y$ the structure map and $pr_1=id:Grightarrow G$.)
characteristic-classes algebraic-vector-bundles
$endgroup$
In Blochs "Cycles on arithmetic schemes and Euler characteristics of curves" he defines the bivariant chern class for bundles on a scheme.
Now I wanted to calculate a bivariant chern class with $n=1$ for what I need to calculate the first chern class $c_1(xi)$, where $$xi=pr_0^*xi_0-pr_1^*xi_1=Gtimes_{G_0} E_0-Gtimes_G xi_1=Gtimes_Y E_0-xi_1$$
for the canonical rank-$e_i$-subbundles $xi_0=E_0$ and $xi_1$.
Question: How can I find a more explicit (as explicit as possible) representation of $c_1(xi$)? I want to calculate $deg(c_1(xi))$.
Any hint can help!
I read parts of Fultons "Intersection theory", where Fulton defines the bivariant chern class in a slightly more general setting, but it did not help that much.
(Notation: He considers a scheme Y of finite type over a regular noetherian base, a closed subscheme $Xsubset Y$, a two-term-complex $E_1rightarrow E_0$ of vector bundles and $e_i=rk(E_i)$. $G=Grass_{e_1}(E_1oplus E_0)$ is the Grassmannian of rank-$e_1$-subbundles of $E_1oplus E_0$, $pr_0:Grightarrow G_0=Grass_{e_0}(E_0)=Y$ the structure map and $pr_1=id:Grightarrow G$.)
characteristic-classes algebraic-vector-bundles
characteristic-classes algebraic-vector-bundles
edited Dec 13 '18 at 10:02
Student7
asked Nov 13 '18 at 14:12
Student7Student7
1839
1839
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996774%2fchern-class-of-bundle-in-blochs-cycles-on-arithmetic-schemes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996774%2fchern-class-of-bundle-in-blochs-cycles-on-arithmetic-schemes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown