Evaluating the integral $int_0^{pi/4}sqrt{1-16sin^2(x)}mathop{}!mathrm dx$












4












$begingroup$


How can we evaluate this integral?
$$int_limits{0}^{pi/4}sqrt{1-16sin^2(x)}mathop{}!mathrm dx$$
I tried a substitution
$$u=4sin x,quad mathrm dx=frac{mathrm du}{sqrt{16-u^2}}$$
hence the integration will be



$$int_limits{u=0}^{u=2sqrt{2}}frac{sqrt{1-u^2}}{sqrt{16-u^2}}mathop{}!mathrm du$$
But I could not complete the solution using this substitution.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Accordingly, this cannot be solved in terms of elementary functions. In other words, there is no closed form solution and you must resort to numerical integration over a given interval.
    $endgroup$
    – Decaf-Math
    Dec 13 '18 at 20:08








  • 3




    $begingroup$
    You have an elliptic integral. Furthermore, at $x = frac {pi}{4}$ the integrand is complex.
    $endgroup$
    – Doug M
    Dec 13 '18 at 20:22












  • $begingroup$
    u = 2.sin x is a nice substitution but results in complex numbers.
    $endgroup$
    – William Elliot
    Dec 13 '18 at 20:30










  • $begingroup$
    You're taking the square root of negative numbers in the integral. Is that what you want?
    $endgroup$
    – zhw.
    Dec 13 '18 at 21:44
















4












$begingroup$


How can we evaluate this integral?
$$int_limits{0}^{pi/4}sqrt{1-16sin^2(x)}mathop{}!mathrm dx$$
I tried a substitution
$$u=4sin x,quad mathrm dx=frac{mathrm du}{sqrt{16-u^2}}$$
hence the integration will be



$$int_limits{u=0}^{u=2sqrt{2}}frac{sqrt{1-u^2}}{sqrt{16-u^2}}mathop{}!mathrm du$$
But I could not complete the solution using this substitution.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Accordingly, this cannot be solved in terms of elementary functions. In other words, there is no closed form solution and you must resort to numerical integration over a given interval.
    $endgroup$
    – Decaf-Math
    Dec 13 '18 at 20:08








  • 3




    $begingroup$
    You have an elliptic integral. Furthermore, at $x = frac {pi}{4}$ the integrand is complex.
    $endgroup$
    – Doug M
    Dec 13 '18 at 20:22












  • $begingroup$
    u = 2.sin x is a nice substitution but results in complex numbers.
    $endgroup$
    – William Elliot
    Dec 13 '18 at 20:30










  • $begingroup$
    You're taking the square root of negative numbers in the integral. Is that what you want?
    $endgroup$
    – zhw.
    Dec 13 '18 at 21:44














4












4








4





$begingroup$


How can we evaluate this integral?
$$int_limits{0}^{pi/4}sqrt{1-16sin^2(x)}mathop{}!mathrm dx$$
I tried a substitution
$$u=4sin x,quad mathrm dx=frac{mathrm du}{sqrt{16-u^2}}$$
hence the integration will be



$$int_limits{u=0}^{u=2sqrt{2}}frac{sqrt{1-u^2}}{sqrt{16-u^2}}mathop{}!mathrm du$$
But I could not complete the solution using this substitution.










share|cite|improve this question











$endgroup$




How can we evaluate this integral?
$$int_limits{0}^{pi/4}sqrt{1-16sin^2(x)}mathop{}!mathrm dx$$
I tried a substitution
$$u=4sin x,quad mathrm dx=frac{mathrm du}{sqrt{16-u^2}}$$
hence the integration will be



$$int_limits{u=0}^{u=2sqrt{2}}frac{sqrt{1-u^2}}{sqrt{16-u^2}}mathop{}!mathrm du$$
But I could not complete the solution using this substitution.







calculus integration trigonometry definite-integrals elliptic-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 22:05







user614671

















asked Dec 13 '18 at 20:06









MCSMCS

316211




316211








  • 2




    $begingroup$
    Accordingly, this cannot be solved in terms of elementary functions. In other words, there is no closed form solution and you must resort to numerical integration over a given interval.
    $endgroup$
    – Decaf-Math
    Dec 13 '18 at 20:08








  • 3




    $begingroup$
    You have an elliptic integral. Furthermore, at $x = frac {pi}{4}$ the integrand is complex.
    $endgroup$
    – Doug M
    Dec 13 '18 at 20:22












  • $begingroup$
    u = 2.sin x is a nice substitution but results in complex numbers.
    $endgroup$
    – William Elliot
    Dec 13 '18 at 20:30










  • $begingroup$
    You're taking the square root of negative numbers in the integral. Is that what you want?
    $endgroup$
    – zhw.
    Dec 13 '18 at 21:44














  • 2




    $begingroup$
    Accordingly, this cannot be solved in terms of elementary functions. In other words, there is no closed form solution and you must resort to numerical integration over a given interval.
    $endgroup$
    – Decaf-Math
    Dec 13 '18 at 20:08








  • 3




    $begingroup$
    You have an elliptic integral. Furthermore, at $x = frac {pi}{4}$ the integrand is complex.
    $endgroup$
    – Doug M
    Dec 13 '18 at 20:22












  • $begingroup$
    u = 2.sin x is a nice substitution but results in complex numbers.
    $endgroup$
    – William Elliot
    Dec 13 '18 at 20:30










  • $begingroup$
    You're taking the square root of negative numbers in the integral. Is that what you want?
    $endgroup$
    – zhw.
    Dec 13 '18 at 21:44








2




2




$begingroup$
Accordingly, this cannot be solved in terms of elementary functions. In other words, there is no closed form solution and you must resort to numerical integration over a given interval.
$endgroup$
– Decaf-Math
Dec 13 '18 at 20:08






$begingroup$
Accordingly, this cannot be solved in terms of elementary functions. In other words, there is no closed form solution and you must resort to numerical integration over a given interval.
$endgroup$
– Decaf-Math
Dec 13 '18 at 20:08






3




3




$begingroup$
You have an elliptic integral. Furthermore, at $x = frac {pi}{4}$ the integrand is complex.
$endgroup$
– Doug M
Dec 13 '18 at 20:22






$begingroup$
You have an elliptic integral. Furthermore, at $x = frac {pi}{4}$ the integrand is complex.
$endgroup$
– Doug M
Dec 13 '18 at 20:22














$begingroup$
u = 2.sin x is a nice substitution but results in complex numbers.
$endgroup$
– William Elliot
Dec 13 '18 at 20:30




$begingroup$
u = 2.sin x is a nice substitution but results in complex numbers.
$endgroup$
– William Elliot
Dec 13 '18 at 20:30












$begingroup$
You're taking the square root of negative numbers in the integral. Is that what you want?
$endgroup$
– zhw.
Dec 13 '18 at 21:44




$begingroup$
You're taking the square root of negative numbers in the integral. Is that what you want?
$endgroup$
– zhw.
Dec 13 '18 at 21:44










1 Answer
1






active

oldest

votes


















5












$begingroup$

begin{align}
int_{0}^{pi/4},sqrt{,{1 - 16sin^{2}left(, x,right)},},,mathrm{d}x & =
int_{0}^{pi/4},sqrt{,{1 - 4^{2}sin^{2}left(, x,right)},},,mathrm{d}x
\[5mm] & =
bbox[10px,#ffd,border:1px groove navy]{mathrm{E}left(,{{pi over 4},4},right)}
end{align}




$displaystylemathrm{E}$ is a
Legendre Integral.







share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    @Clayton I don't think so. Maybe, that's ONE of the reasons people define a new "special function".
    $endgroup$
    – Felix Marin
    Dec 13 '18 at 20:46










  • $begingroup$
    Thanks, Felix!${}$
    $endgroup$
    – Clayton
    Dec 13 '18 at 20:51











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038518%2fevaluating-the-integral-int-0-pi-4-sqrt1-16-sin2x-mathop-mathrm-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

begin{align}
int_{0}^{pi/4},sqrt{,{1 - 16sin^{2}left(, x,right)},},,mathrm{d}x & =
int_{0}^{pi/4},sqrt{,{1 - 4^{2}sin^{2}left(, x,right)},},,mathrm{d}x
\[5mm] & =
bbox[10px,#ffd,border:1px groove navy]{mathrm{E}left(,{{pi over 4},4},right)}
end{align}




$displaystylemathrm{E}$ is a
Legendre Integral.







share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    @Clayton I don't think so. Maybe, that's ONE of the reasons people define a new "special function".
    $endgroup$
    – Felix Marin
    Dec 13 '18 at 20:46










  • $begingroup$
    Thanks, Felix!${}$
    $endgroup$
    – Clayton
    Dec 13 '18 at 20:51
















5












$begingroup$

begin{align}
int_{0}^{pi/4},sqrt{,{1 - 16sin^{2}left(, x,right)},},,mathrm{d}x & =
int_{0}^{pi/4},sqrt{,{1 - 4^{2}sin^{2}left(, x,right)},},,mathrm{d}x
\[5mm] & =
bbox[10px,#ffd,border:1px groove navy]{mathrm{E}left(,{{pi over 4},4},right)}
end{align}




$displaystylemathrm{E}$ is a
Legendre Integral.







share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    @Clayton I don't think so. Maybe, that's ONE of the reasons people define a new "special function".
    $endgroup$
    – Felix Marin
    Dec 13 '18 at 20:46










  • $begingroup$
    Thanks, Felix!${}$
    $endgroup$
    – Clayton
    Dec 13 '18 at 20:51














5












5








5





$begingroup$

begin{align}
int_{0}^{pi/4},sqrt{,{1 - 16sin^{2}left(, x,right)},},,mathrm{d}x & =
int_{0}^{pi/4},sqrt{,{1 - 4^{2}sin^{2}left(, x,right)},},,mathrm{d}x
\[5mm] & =
bbox[10px,#ffd,border:1px groove navy]{mathrm{E}left(,{{pi over 4},4},right)}
end{align}




$displaystylemathrm{E}$ is a
Legendre Integral.







share|cite|improve this answer









$endgroup$



begin{align}
int_{0}^{pi/4},sqrt{,{1 - 16sin^{2}left(, x,right)},},,mathrm{d}x & =
int_{0}^{pi/4},sqrt{,{1 - 4^{2}sin^{2}left(, x,right)},},,mathrm{d}x
\[5mm] & =
bbox[10px,#ffd,border:1px groove navy]{mathrm{E}left(,{{pi over 4},4},right)}
end{align}




$displaystylemathrm{E}$ is a
Legendre Integral.








share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 13 '18 at 20:38









Felix MarinFelix Marin

68.2k7109143




68.2k7109143








  • 1




    $begingroup$
    @Clayton I don't think so. Maybe, that's ONE of the reasons people define a new "special function".
    $endgroup$
    – Felix Marin
    Dec 13 '18 at 20:46










  • $begingroup$
    Thanks, Felix!${}$
    $endgroup$
    – Clayton
    Dec 13 '18 at 20:51














  • 1




    $begingroup$
    @Clayton I don't think so. Maybe, that's ONE of the reasons people define a new "special function".
    $endgroup$
    – Felix Marin
    Dec 13 '18 at 20:46










  • $begingroup$
    Thanks, Felix!${}$
    $endgroup$
    – Clayton
    Dec 13 '18 at 20:51








1




1




$begingroup$
@Clayton I don't think so. Maybe, that's ONE of the reasons people define a new "special function".
$endgroup$
– Felix Marin
Dec 13 '18 at 20:46




$begingroup$
@Clayton I don't think so. Maybe, that's ONE of the reasons people define a new "special function".
$endgroup$
– Felix Marin
Dec 13 '18 at 20:46












$begingroup$
Thanks, Felix!${}$
$endgroup$
– Clayton
Dec 13 '18 at 20:51




$begingroup$
Thanks, Felix!${}$
$endgroup$
– Clayton
Dec 13 '18 at 20:51


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038518%2fevaluating-the-integral-int-0-pi-4-sqrt1-16-sin2x-mathop-mathrm-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten